數學解題能力管理論文

時間:2022-08-06 12:19:00

導語:數學解題能力管理論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

數學解題能力管理論文

如何培養學生的解題能力,是一個較復雜的問題。從理論上看,解題能力涉及到邏輯學、心理學、教育學等學科的問題。從內容上看,解題能力包括對應用題、文字題、計算題等各類問題處理的能力。從小學生解題的行為實際看,小學生解題主要存在的問題有:一是難以養成思維習慣,常常盲目解題;二是任務觀點嚴重,解題不求靈活簡潔;三是馬虎草率,錯誤百出。心理學認為:智力的核心是思維能力。從素質教育的觀點來看,發展思維、提高智力,是提高素質的重要內容。要提高學生的解題能力,首先要提高學生的智力,發展他們的思維。

下面從發展學生的思維角度和學生的解題實際出發,談談如何培養學生的解題能力。

一、一例多說,養成解題的思維習慣

語言和思維密切相關,語言是思維的外殼,也是思維的工具。語言可以促進思維的發展,反過來,良好的邏輯思維,又會引導出準確、流暢而又周密的語言。在教學實踐中,不少老師只強調“怎樣解題”,而忽視了“如何說題(說題意、說思路、說解法、說檢驗等)”。看似這是重視解題,實則這是忽略解題能力的培養。由于缺少對解題的思維習慣、思維品質的培養,學生的解題能力,只囿于題海戰術、死記硬背的機械記憶中,這與當前的素質教育格格不入。

另外,從學生解題的實際表現看,學生解題的錯誤,一般是由于缺乏細致、周密的邏輯思考和分析。特別是當作業量稍多時,這種表現更為突出。從教師教學實際看,教師為了強化對學生解題思路的訓練,往往要求學生在作業本上寫出分析思路圖,或畫出線段圖。但這項工作,對于小學生來說,一方面難度比較大,另一方面因費時多,學生持久性不夠,往往收效并不大。筆者認為加強課堂教學中的“說題訓練”,即采用“順逆說”、“轉換說”和“辯論說”等幾種訓練形式,養成學生解題的思維習慣,從而培養學生的解題能力。

1.順逆說。

每解答一道應用題時,不必急于去求答案,而要讓學生分別進行順思考和逆思考,把解題思路及計劃說出來。比如解答“三年級種樹25棵,四年級種樹是三年級的2倍,四年級比三年級多種幾棵?”先讓學生用綜合法從條件到問題依次說出思路,再讓學生用分析法從問題到條件說出思路。學生順逆分別說清思路后,再列出算式“25×2-25”。如果,學生在說的過程中,語言還不夠流暢,思路還不夠清晰,還要再讓學生看算式“25×2-25”,再進行第二次“順逆說”:先讓學生說第一步“25×2”表示什么?再讓學生說第二步“25×2-25”表示什么?最后先說第二步、再說第一步。在解答文字題時,也可進行順逆說的訓練。如“3個1/5比2個1/4多多少?列出算式“1/5×3-1/4×2”后,讓學生根據算式,說出“1/5×3-1/4×2”的意義,再把說出的意義與原題對照,看看是否一致?如不一致,則要重新分析,認真檢查,直到說出的意義與原題一致為止。

2.轉換說。

對于題中某一個條件或問題,要引導學生善于運用轉換的思想,說成與其內容等價的另一種表達形式,使學生加深理解,從而豐富解題方法,提高解題能力。如已知“A與B的比是3∶5”,可引導學生聯想說出:(1)B與A的比是5∶3;(2)A是B的3/5;(3)B是A的5/3;(4)A比B少2/5;(5)B比A多2/5;(6)A是3份,B是5份,一共是8份,等等。這樣,學生解題思路就會開闊,方法就會靈活多樣,從而化難為易。

3.辯論說。

鼓勵學生有理有據的自由爭辯,有利于培養學生獨立思考和勇于發表不同見解的思維品質,尋找到獨特的解題方法。有一次,一位老師教學解答圓面積一題時,老師問學生:“計算圓面積要知道什么條件才能進行計算?”多數學生回答“必須知道半徑,才能求出圓面積。”但有一個學生舉手表示不同意,認為“知道周長或直徑,同樣可以計算圓面積。”對這個學生的回答,老師一方面作了肯定,另一方面要他和持不同意見的同學進行辯論。這樣,雙方經過幾輪辯論后,使這位學生認識到“已知周長或直徑,最終還是要先求出半徑”的道理。另外,也使大部分同學明白了“不光只有知道半徑,才能計算圓面積”的道理。

二、多向探索,培養解題的靈活性

求異思維是一種創造性思維。它要求學生憑借自己的知識水平能力,對某一問題從不同的角度,不同的方位去思考,創造性地解決問題。而小學生的思維是以具體形象思維為主,容易產生消極的思維定勢,造成一些機械思維模式,干擾解題的準確性和靈活性。有的學生常常將題中的兩個數據隨意連接,而忽視其邏輯意義。如“小方和小圓各有同樣多的水果糖,小方吃了5粒,小圓吃了6粒,剩下的誰多?”由于受數值大小這一表象的干擾,學生的思維定勢集中在“6>5”上,容易誤判斷為“小圓剩下的多”。為了排除學生類似的消極思維定勢的干擾,在解題中,要努力創造條件,引導學生從各個角度去分析思考問題,發展學生的求異思維,使其創造性地解決問題。通常運用的方法有“一題多問”、“一題多解”和“一題多變”。

1.一題多問。

同一道題,同樣的條件,從不同的角度出發,可以提出不同的問題。如解答“五一班有學生45人。女生占4/9,女生有多少人?”這本來是一道很簡單的題目。教學中,老師往往會因學生很容易解答,而一晃而過,忽視發散思維的訓練。對于這樣的題型,老師要執意求新,變換提出新的問題。如再提出如下問題:(1)男生有多少人?(2)全班有多少人?(3)男生比女生多多少人?(4)男生是女生的幾倍?(5)女生是男生的幾分之幾?等等。這樣,可以起到“以一當十”的教學效果。像同一道題,老師還可以從分析上多提問,從解法上多提問,從檢驗上多提問,進行多問啟思訓練,培養學習思維的靈活性。

2.一題多解。

在解題時,要經常注意引導學生從不同的方面,探求解題途徑,以求最佳解法。

例如“某村計劃修一條長150米的路,前3天完成了計劃的20%,照這樣計算,完成這條路還需多少天?”首先老師要學生用多種方法解。在學生沒有學習工程問題時,解法一般集中在以下三種上:①(150-150×20%)÷(150×20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。

針對這些解法,老師要善于引導學生比較三種方法的異同點,總結出“三種方法中都運用了全程150米”這一條件的共性。針對這一共性,老師可打破思維定勢,啟迪學生的新思維:“假如把150米當作一條路(用1來表示),還可以怎樣解答?”這一點撥,學生很容易發現如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)。

綜上六種解法,顯然后三種解法(尤其是解法⑥),列式簡潔,想象豐富,充分可以顯示學生思維的靈活性。

3.一題多變。

小學生解題時,往往受解題動機的影響,因局部感知而干擾整體的認識。例如:“某商廈共有6層,每兩層間的板梯長5米,從1樓到6樓共要走多少米?”往往由于“每兩層5米”和“6層”與學生的解題動機發生共鳴,忽視了“6層只有5段間距”這一特點,而容易得出“5×6”的錯解。要消除類似的干擾,就必須進行一些一題多變的訓練。

針對解題模式的干擾進行變題訓練。如學生學習了工程問題后,求合做工作時間,容易形成這樣一種解題模式“1÷(1/A+1/B)”。我們可將條件中的時間改變成分數形式。如“一項工作,甲獨做1/2小時完成,乙獨做1/4小時完成,如兩人合做要多少小時完成?”如老師不提醒,學生絕大多數會把“1/2小時”和“1/4小時”當作工效,仍然列出算式“1÷(1/2+1/4)”來解答(實踐統計,第1次這樣的錯誤率在75%以上)。又如學生學過等分除法應用題后,往往見“分成幾份”就“用除法計算”。在學生掌握等份除法計算方法后,也要注意變題訓練。如設計類似題“6粒水果糖分成3份,最少的1份是多少粒?”可淡化消極的“6÷3”思維定勢的干擾。因為“6÷3”計算錯了,其實最少的1份是1粒(題中并沒有要求平均分)。

通常,教學中的變條件、變問題、條件和問題的互換等,都是一題多變的好形式,但是,變題訓練要掌握一個原則,就是要在學生較牢固的掌握法則、公式的基礎上,進行變題形練。否則,將淡化思維定勢的積極作用,不利于學生牢固地掌握知識。

三、聯系對比,提高解題的準確率

為了減少學生的解題錯誤,提高解題的準確率,除加強估算和檢驗外,通常較有效的辦法是要善于聯系對比,讓學生在比較中認識、在比較中區別、在比較中理解、在比較中提高。常用的聯系比較方法有:

1.聯系生活實際對比。

對于一些農業生產上的株距、行距,工業上的產值、工效,商業上的成本、利潤等,學生缺乏生活經驗,難以產生共鳴;對于一些較大數字的四則運算,學生解答毅力不強,容易產生畏難情緒。加之,有些教師講到應用題,便說應用題怎樣重要,如何難學,上課要認真呀……說到計算題,又說怎樣容易出錯,計算時要怎樣細心,否則……看似老師提醒學生重視,實則給學生增加了心理壓力,背上了思想包袱。其實,只要把數學題與學生的生活實際聯系起來進行對比,解題并不是一件很難的事情。

對于難理解的題,要增添一些與之數量關系相同,能貼近學生生活的實例,先解熟悉的題,再解生疏的題。如要解答:“某專業戶要種一塊300平方米的果樹,行距2米、棵距1米,種完這塊地要多少棵樹苗?”可首先補充另一題:“在一塊300平方米的操場上站隊做操,每兩排縱隊之間相距2米,前后兩人之間相距1米,按這樣站隊,站滿這個操場一共要多少人?”因兩題思路相通,解法相同,先解貼近學生生活的補充題,再解原題,遷移自然,默化易成。

2.聯系正誤對比。

有比較才有鑒別,學生解題的錯誤,往往錯在認識不清、感知模糊、理解膚淺上,用給出正確答案(或算式)和錯誤答案(或算式)的對比如正誤分析對比、正誤解法對比等,都有利于加強學生辯證思維訓練,有利于提高解題能力。通常的選擇題就是很好的訓練形式。

3.聯系題型對比。

在小學數學題型中,歸納起來,不外乎是概念題、計算題、文字題、應用題和圖式題等幾大類。像計算式題、文字題、應用題、圖式題大都是實際生活中的例子,只是用四種不同的描述形式表達而已。比如“6個蘋果吃了2個,還有幾個?”除用這種“應用題”的形式描述外,還可以用最簡單的算式“6-2=?”來描述,也可以用一句話“6減2的差是多少?”或一幅線段圖(或實物圖)來描述。根據這種知識內在的聯系特點,在教學中,要善于把各種描述的形式,聯系起來,進行訓練,達到由此及彼,由里及外,融匯貫通和舉一反三的效果。

培養解題能力的途徑和方法很多,但無論哪種途徑和方法,最根本的、相通的是離不開思維的訓練。