長方體和正方體的認識范文

時間:2023-03-15 02:28:05

導語:如何才能寫好一篇長方體和正方體的認識,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

長方體和正方體的認識

篇1

1、長方體的特征:由六個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形叫長方體。長方體相對的兩個面完全相同,即:前后兩個面,左右兩個面,上下兩個面是相同的。

2、正方體的特征:正方體是由6個完全相同的正方形圍成的立體圖形。正方體有6個面、12條棱和8個頂點,6個面完全相同,12條棱的長度都相等。

(來源:文章屋網 )

篇2

使學生直觀認識長方體和正方體,能夠辨認這些圖形.

教學重點和難點

重點:直觀認識長方體和正方體,知道圖形的名稱.

難點:辨認這些圖形.能夠區別長方形與長方體,正方形與正方體.

教學過程設計

(一)復習準備

下圖中有多少個長方形?多少個正方形?多少個三角形?多少個圓?(投影片)

(二)學習新課

1.初步認識長方體.

(1)出示長方體實物(裝墨水瓶的紙盒、火柴盒)

師:同學們看這個紙盒和火柴盒,誰知道它們是什么

形狀?學生能回答可由學生回答,不能回答老師告訴學

生,并板書:長方體.

(2)看一看、摸一摸.

讓學生拿出一個長方體實物,看一看它的形狀,摸一摸每個面.

師:長方體有幾個面?怎樣正確地數出?(長方體有上、下兩個面,前、后兩個面,左、右兩個面,一共有六個面)

師:長方體每個面是什么形狀的?相對的面一樣嗎?(長方體每個面都是長方形,相對的面完全一樣)

教師再出示一個長方體實物.(其中有兩個面是正方形的)

師:這也是一個長方體.它有幾個面?每個面是什么形?相對的面一樣嗎?(這個長方體有六個面,有四個面是長方形,有兩個面是正方形,相對的面一樣)

(3)舉例.

日常生活中,你還見到過哪些東西的形狀是長方體?

(4)小結.

師:通過看一看、摸一摸,我們知道長方體有6個面,相對著的兩個面的形狀相同,有的長方體的6個面都是長方形的,有的長方體有兩個面是正方形,其余4個面是長方形.

板書:6個面長方形(也可能有兩個面是正方形)

教師出示長方體實物,變換擺放方向,讓學生從不同角度觀察、認識長方體.如下圖:

2.初步認識正方體.

(1)出示正方體實物(魔方玩具、方積木塊)

師:誰知道它們是什么形狀的?邊說邊在黑板上板書:正方體.

師:正方體有幾個面?每個面都是什么形?

讓學生拿出事先準備好的正方體數一數有幾個面,再拿一個正方形的紙放在正方體的每個面上比一比.師生共同得出正方體有6個面,每個面都是正方形.

板書:6個面正方形

3.認識長方體圖和正方體圖.

師:現在我把長方體和正方體畫成圖,你們認識嗎?

教師出示已畫好的長方體圖和正方體圖,讓學生說出它們各自的名稱,并貼在板書長方體和正方體的左面.

4.辨認長方體和正方體.

(1)請同學們閉上眼睛想一想:長方體是什么樣子的?正方體是什么樣子的?

(2)選圖形(投影片)

(三)鞏固反饋

1.教科書p.23做一做.

先讓學生說一說中間一行的每一個圖形的名稱,再讓學生把是長方體或正方體的實物和它所對應的幾何圖形用線連起來.然后集體訂正.

2.在長方體下面畫√.

3.在正方體下面畫√.

4.數一數.

長方體有()個正方體有()個

長方形有()個正方形有()個

5.動手擺.

教科書練習七第2,3題.

課堂教學設計說明

這節課的教學任務是使學生對長方體和正方體有一些感性認識,知道它們的名稱,能夠辨認就可以了.由于是初步認識,因此不要對學生提更高的要求.

首先通過實物對長方體有感性認識,在此基礎上通過看一看、摸一摸,知道長方體有幾個面?各是什么形?繼而概括出長方體的特征.然后教師通過變換長方體的擺放方向,從直觀上加深對長方體的認識.最后教師再出出示長方體圖,讓學生抽象的認識長方體.體現了對學生思維深刻性的培養.

篇3

下冊第二單元展開與折疊

課題

展開與折疊

課型

新授課

教學目標

1.通過動手操作,知道長方體、正方體的展開圖。加深對長方、正方體的認識。

2.在想象,操作等活動中,發展空間觀念,激發學習數學的興趣。

教學重點

知道長方體、正方體的展開圖

教學難點

發展空間觀念。

教具準備

長方體、正方體紙盒、剪刀

教師指導與教學過程

學生學習活動過程

設計意圖

一.復習

1.說一說:復習長方體、正方體的特征。

1

六個面

2

12條棱

3

8個頂點

不同點:六個面的面積。

二.新授

1.剪一剪:

引導學生通過把1個正方體盒子沿著棱剪開圖。

2.說一說:

正方體展開圖是怎樣的?

3.將長方體盒子沿棱剪開,試試看。

4.比一比。

學生回顧:

長方體的基本特征

正方體的基本特征

相同點

不同點

學生動手剪開正方體紙盒。

觀察,得到了一個怎么樣的展開圖。

小組中進行交流。說說自己剪的方法,比一比展開圖是否相同?

引導學生剪開長方體盒子,觀察長方體的展開圖。

引導學生對長方體盒子和正方體盒子進行比較。

通過復習鞏固對長方體、正方體的認識。引入認識展開長方體、正方體的折疊。

通過剪一剪等實踐活動,把長方體、正方體盒子剪開得到平面圖形的活動,引導學生直觀認識長方體和正方體的展開圖。

教師指導與教學過程

學生學習活動過程

設計意圖

相同點:有六個面。

不同點:六個面的大小不同。

5.做一做:

引導學生觀察圖形正方體?

長方體?

圍成正方體所要的條件?

用手中的材料嘗試折疊。

獨立想一想哪些圖形符合要求。

組織學生進行交流。

三.練一練。

引導學生:看展開圖。

在操作中進行驗證。

思考:與1、2、3號面相對的的是幾號面?

同學間進行交流,利用附頁中的圖試一試。

途中哪兩個面是相對的

折一折,試一試。

通過做一做,引導學生體會展開圖形與長方體、正方體的聯系。

通過折疊正方體、長方體的展開圖,發展學生的空間觀念。

板書設計:

篇4

【關鍵詞】長方體;正方體;錯例分析;對策

長方體和正方體是最基本的立體圖形,在教學本單元之前,學生認識了常見的平面圖形,初步建立了長度、面積的概念,通過學習長方體和正方體,可以使學生對自己周圍的空間和空間中的物體形成初步的空間觀念,是進一步學習其他立體幾何圖形的基礎,是從“形”到“體”認識的飛躍,對空間觀念的發展和后繼學習有很大的影響。另外,長方體和正方體體積的計算,也是學生形成體積的概念、掌握體積的計量單位和計算各種幾何形體體積的基礎。

本單元的教學內容是從長方體和正方體的認識,長方體和正方體的表面積,長方體和正方體的體積三方面來教學。通過本單元的學習后,學生要能計算長方體與正方體的表面積、體積和解決一些生活中的實際問題。可是在實際應用練習中,卻發現學生有很多的錯誤。

一、錯例收集與分析:

第一類:單位換算錯誤

分析:(1)小單位向大單位轉換,應該除以進率。(2)大單位向小單位轉換,應該乘以進率。(3)長度單位、面積單位與體積單位之間的換算,學生總是混淆。(4)容積單位與體積單位之間的混淆不清。(5)計算的錯誤,小數點位置移動錯誤。

第二類:概念錯誤

分析:(1)長方體的表面積與體積概念區別不清,把求表面積與求體積搞混,不能很好的區分,就不能正確地解答。(2)單位的錯寫,計算后的最后結果的單位寫錯,要用面積單位卻用體積單位,反過來要用體積單位卻用面積單位。這些都是因為概念的不清。

第三類:數量關系錯誤

分析:(1)數量關系錯誤:每平方米用漆量乘以涂漆部分面積,就是共需要用的油漆重量,而這里學生用了除法。(2)單位的換算錯誤:把克轉化為千克應該除以進率1000,但學生除以10了。

二、錯誤集中體現

學生錯誤主要集中表現為:①在求長方體或正方體表面積時,找不準具體每一個面中的長與寬;②對表面積應用題中某些抽象數學術語理解不清;③對具體問題中具體需要用到哪些面的面積不能準確把握。這些錯誤的根源是學生生活經驗缺乏,空間觀念發展不夠,抽象思維能力有限。

三、解決問題的對策

主要從教學內容上讓學生充分全面理解長方體與正方體的各種概念。對于長方體與正方體的認識,應該加強直觀演示和操作。長方體和正方體的比較時,可以按照面、棱、頂點的次序,引導學生找出它們的相同點和不同點。表面積的難點在于,學生往往因不能根據給出的長方體的長、寬、高,想像出每個面的長和寬各是多少,以致在計算中出現錯誤。為了使學生更好地建立表面積的概念,應加強動手操作,讓學生拿一個長方體或正方體紙盒,沿著棱剪開,再展開,看一看展開后的形狀。然后,讓學生在展開后的圖形中,分別用“上”“下”“前”“后”“左”“右”標明6個面。這樣,可以使學生把展開后每個面與展開前這個面的位置聯系起來,更清楚地看出長方體相對的面的面積相等,每個面的長和寬與長方體的長、寬、高之間的關系,為下面學習計算長方體的表面積做好準備。體積對學生來說是一個新概念。由認識平面圖形到認識立體圖形,是學生空間觀念的一次發展。學生對什么是物體的體積,怎樣計量物體的體積,以及體積單位之間的進率為什么是千進位等問題,都不易理解。因此應加強學生對體積概念的認識。

另外我們還可以用以下對策解決問題:

1.教會學生畫長方體、正方體直觀圖,充分利用長方體、正方體直觀圖解決問題,在計算基本的長方體表面積時,學生常出現:求上面或下面的面的面積,不知用哪兩條棱長度相乘;求左面或右面的面的面積不知道用哪兩條棱長相乘;求前面或后面的面積不知道用哪兩條棱長度相乘。針對這種現象,首先讓學生根據題意畫出這個長方體直觀圖,在圖中相應位置標出這個長方體長、寬、高的長度;接著,在分析題意的基礎上,要求學生根據問題寫出這個長方體表面積的計算公式:①長方體表面積=(上面面積+右面面積+前面面積)×2或②長方體表面積=上下面面積+左右面面積+前后面面積;然后,讓學生算到哪個面的面積,就把這個面涂上顏色;最后,再確定出涂色的這個單獨的長方形面的長是多少?寬是多少?當找準一個面的長與寬求出一個面的面積后,與它相對面的面積就知道了。到下一個面時,涂色應與第一個面顏色不同,其余方法與第一個相同。

2.在長方體、正方體表面積的實際應用中,學生對一些數學術語名稱不夠理解,導致問題無法解決。如:深、厚、橫截面邊長、底面周長、底面積、占地面積等。解決這個問題時,讓學生畫出長方體或正方體的直觀圖后,讓他們看著直觀圖,指出哪條棱表示深?哪條棱表示厚?橫截面是哪個面?底面積是哪個面?底面周長指什么?占地面積指什么?……經過這樣身心參與其中的看與指后,學生對這些數學術語名稱就輕而易舉理解了。

篇5

《新課程標準》強調:教學活動是教師和學生的雙邊活動。課堂上,教師的作用在于組織、引導、點撥,學生要通過自己的活動去獲取知識。在數學課堂教學上,教師應給學生留下一片空間來,讓學生去看、去想、去說、動手操作、討論、質疑問難、自學、暴露自我,獲得積極的情感體驗,在數學課堂中放飛學生的思維。

一、創設合理的情境,獲得積極的情感體驗

合理的數學情境是學生掌握知識、形成能力、發展心理品質的重要源泉,是溝通現實生活和數學學習、具體問題與抽象概念之間的橋梁。一個合理的情境創設,能集中學生的注意力,誘發學生思維的積極性,引起學生更多的聯想,也容易調動起學生已有的知識、經驗、感受和興趣,獲得積極的情感體驗,從而更加自主參與知識的獲取過程、問題的解決過程。鑒于這樣的考慮,我在課前給學生準備了很多有“長、正方體”的材料,為學生感知長方體的概念創造直觀而生動的教學情境。這樣,把問題事實借助適當的載體呈現課堂現場,便能構建一種真實開放、動態生成的問題情境。當學生發現情境內容與自己密切相關時,就會覺得學有所得,學有所用,有利于提升學生探究的學習興趣,意義學習便會油然而生。

二、多種感官參與學習,獲得積極的情感體驗

小學生活潑好動,讓學生在數學課堂上適當地“玩”,能調動他們多種感官參與學習,獲得積極的情感體驗,可以有效地提高學生的學習效率,激發他們的學習興趣。抽象的知識,對小學生來說是很難理解的,所以教師要根據他們的年齡特點和認知規律,在課上要引導他們通過觀察、操作、交流等數學活動幫助學生建立起正確的概念;在活動中學生不但學到了知識,而且還能形成一定的能力,所以本課我給學生足夠的時間與空間動手操作。在探究長方體特征,讓學生認識面、棱、頂點時,我把學生分成三人或四人一小組,運用學生自備的長方體事物,在小組內通過看一看、摸一摸、量一量、比一比感受、探索長方體面、棱、頂點的特征;在討論交流中學生又發現了長方體的更多特征,我想通過學生自主的活動來發現長方體的特征他們肯定印象深刻。在解決“從不同的角度觀察一個長方體,最多能同時看到幾個面?”這一教學內容時,我讓學生把一個長方體放在課桌上,然后觀察,學生一會兒站著觀察,一會兒蹲著觀察,一會兒左邊再右邊自主的換角度觀察,學生在觀察后很自信地得出結論:最多能同時看到3個面。

三、從生活中找數學,獲得積極的情感體驗

《數學課程標準》強調數學與現實生活聯系,并要求“數學教學必須從學生熟悉的生活情景和感興趣的事物出發,讓學生親自經歷將實際問題抽象成數學模型進行解釋與應用的過程,使他們體會到數學就在身邊,感受數學的趣味和作用,,體驗到數學的魅力。”本課教學中,我從生活的長、正方體出發,讓學生自己表述自己所認識的長正方體;然后通過自己動手去嘗試制作一個長、正方體,學生表現出了極大的興趣;最后學生用數學語言進行發現總結,使學生對長正、方體的認識有一個漸進的過程。這樣,不僅使學生感受到數學就在身邊,激發學生從生活中找數學的濃厚興趣,獲得積極的情感體驗,也培養了學生提出問題、解決問題的能力。

四、嘗試成功,從中獲得積極的情感體驗

篇6

【教學目標】

1. 使學生經歷體積公式的發現過程,理解并掌握長方體和正方體體積的計算方法。

2. 使學生能運用長、正方體的體積計算解決一些簡單的實際問題。

3. 培養學生歸納推理與抽象概括的能力。

【教學重點】

長方體和正方體體積公式的推導和應用。

【教學難點】

長方體體積公式的推導。

【教學過程】

一、創設問題情境,激發探究需要

師:小明家剛剛買了一臺冰箱。他發現紙箱上有個說明——包裝尺寸:185×150×230 mm。小明不知道這是什么意思,同學們,你知道這是什么意思嗎?我相信大家通過這節課的學習就能幫助小明解決這個問題了。

【設計意圖】聯系生活創設情境,使學生在感受數學與生活聯系的同時,產生積極探究的興趣。

二、經歷探究過程,概括體積公式

(一)教學長方體的體積

1. 比一比:

先觀察,再比較,引導學生發現:長、寬相等時,越高,體積越大;寬、高相等時,越長,體積越大;長高相等時,越寬,體積越大。(學生只能敘述看到的,教師須引導概括)

2. 猜一猜:

師:長方形的面積與長和寬有關,長方體的體積可能與什么有關?(板書課題:長方體的體積)

3. 擺一擺:

(1)小組合作,用若干個體積是1立方厘米的小正方體擺成不同的正方體。

學生分小組活動,分別記下擺出的長方體的長、寬、高。 教師巡視,然后請擺成不同長方體的學生分別回答。

【設計意圖】學生剛剛學過體積單位和體積大小比較的方法,引導學生把三組長方體進行比較,使學生的猜測建立在學生已有的知識經驗基礎上,為學生進行探究指明方向。學生驗證猜想時,可以自由擺不同長方體,這樣既能調動學生探究的積極性,又能為合作學習營造氛圍。學生在操作、交流中可以初步感知到沿著長方體的長、寬、高各擺幾個正方體,它的長、寬、高就分別是幾厘米;長方體里有多少個正方體,體積就是多少立方厘米,體積與長、寬、高有關,從而使學生產生繼續研究的動力。

(2)用1立方厘米的小正方體擺出下面的長方體,各需要幾個?先想一想,再擺一擺:

學生分小組操作后,交流各自擺的方法。有的學生擺放時可能按照要求一個一個擺放,有的學生則可能會有創新想法,比如第3個長方體一共只擺7個,即長邊上擺放4個,寬邊上再擺放2個,高邊上再擺放1個,借助想象拼出長方體,也是可以的。

4. 說一說:

從上面的操作中,你發現長方體的體積與什么有關?有什么關系?先小組交流,再全班交流。(學生說擺法,教師課件演示)

(1)一排擺出4個1厘米■的正方體一共擺了1排擺1層。

(2)一排擺出4個1厘米■的正方體一共擺了3排擺1層。

(3)一排擺出4個1厘米■的正方體一共擺了3排擺2層。

小結:圖中表示長的數,表示一排擺了4個1厘米■的正方體;表示寬的數表示擺了幾排,表示高的數表示有幾層。

【設計意圖】用1立方厘米的正方體擺出圖示的三個長方體,就是引導學生用體積單位測量物體的體積。三個長方體或長寬相等,或長高相等,學生在操作交流中能進一步感知長方體體積與長寬高之間的關系,有助于學生逐漸建構數學認識。學生說的過程就是引導他們回顧、反思的過程。長方體的體積公式呼之欲出。

5. 理一理:

概括長方體的體積公式:長方體的體積=長×寬×高。

如果用字母V表示長方體的體積,用a、b、h分別表示長方體的長、寬、高,那么長方體的體積公式就可以寫成:V=abh。

6. 練一練:

出示:一個長方體,長7厘米,寬4厘米,高3厘米,它的體積是多少?(例1)

學生口答,教師板書:7×4×3=84(厘米■)。

答:它的體積是84厘米■。

【設計意圖】學生經歷“大膽猜測—合作探究—操作驗證”的過程后,概括體積公式已經是水到渠成,學生對自己探究出來的結論印象更深、理解更透。另外,引導學生進一步通過操作驗證猜想,有助于學生理解體積與長、寬、高之間的必然聯系,感受數學的嚴謹及結論的確定性。引導學生學以致用,能幫助學生及時鞏固所學知識。

(二)教學正方體的體積

1. 課件演示例1中長方體(長7厘米,寬4厘米,高3厘米)變成正方體的過程。

2. 提問:現在,這個圖形的長、寬、高各是多少?變成了什么圖形?怎么求它的體積?

3. 學生口答,教師板書: 3×3×3=27(厘米■)。

4. 提問:我們已經會計算具體的正方體的體積了,能說出正方體體積計算的方法嗎?學生口答,教師板書:正方體體積=棱長×棱長×棱長。

用V表體積,a表示棱長,公式可寫成:V=a·a·a或者V=a3。

5. 教學例2:(投影)一塊正方體石料,棱長是6分米,這塊石料的體積是多少立方分米?

學生口答,教師板書:6■=6×6×6=216(分米■)。

答:體積是216分米■。

6. 小結:正方體的長、寬、高都相等,所以公式中b,h都變為a。變換后,雖然長方體和正方體體積公式寫出來不相同,但計算方法的實質是一樣的,都是長×寬×高。

【設計意圖】根據正方體的特點,學生在獨立思考之后小組交流,能從長方體的體積公式演繹推導出正方體的體積公式。寫正方體體積的字母公式時,乘號省去不寫,要寫成V=a3,這是新知識,及時練習有助于學生內化新知。溝通長方體和正方體體積之間的聯系,有助于學生靈活掌握所學知識。

三、解決實際問題,靈活應用公式

1. 口答填表:

2. 判斷正誤并說明理由。

①0.2■= 0.2×0.2×0.2。(?搖?搖?搖?搖?搖?搖)

②一個長方體,長5分米,寬4分米,高3厘米,它的體積是60分米■。(?搖?搖?搖?搖?搖?搖)

③一個正方體棱長4分米,它的體積是4■=12(分米■)。(?搖?搖?搖?搖?搖?搖)

④體積相等的兩個長方體,它們的長、寬、高的長度一定相等。(?搖?搖?搖?搖?搖?搖)

3. 冰箱包裝盒上的問題:小明家冰箱的包裝尺寸是185×150×230 mm表示什么?

【設計意圖】練習設計體現一定的層次性:口答填表是引導學生靈活應用長方體和正方體的體積公式,判斷正誤是幫助學生準確理解和靈活掌握所學的公式;解決冰箱問題,既是首尾呼應,也是幫助學生學會解決生活中的實際問題,使學生感知數學來源于生活實踐、學好數學能解決生活中的實際問題。

四、回顧所學知識,分享學習收獲

1.今天我們研究了什么?

篇7

關鍵詞:幾何形體;表象;思維

筆者在“長方體與正方體”的教學過程中,重點通過教學生學會觀察、實踐操作、想象畫圖等方法,幫助學生建立表象,啟迪思維,發展空間觀念。

一、指導學生觀察

觀察是培養學生空間觀念的基本方法。“長方體與正方體”教學內容的概念較多,學生在學習時,教師要正確引導他們通過觀察實物、教具,正確建立長方體與正方體的點、棱、面、體積等表象,為正確形成概念提供感性基礎,指導他們正確理解其中的聯系與區別,建立表象,啟迪空間思維。

例如,在教學“長方體與正方體”的認識時,要展示大量的、各種形狀的長方體與正方體給學生觀察,尤其是要向學生展示有兩個相對的面是正方形的長方體,讓學生直觀感知這種長方體的特殊性,并以此幫助學生建立長方體的表象。同時,為了讓學生加深認識,運用置換擺放方式,將長方體、正方w以不同的面為底面擺放展示給學生,讓他們換位觀察,逐步建立空間表象。

又如,在教學“體積單位”時,展示教具,指導學生通過觀察,感知1立方厘米、1立方分米、1立方米的大小;同時,指導學生測量這些教具的棱長,感知1立方厘米、1立方分米、1立方米的概念,建立體積單位的空間表象。

觀察是學生建立空間表象的基礎。在教學中,我們要正確引導學生觀察,幫助他們建立表象,發展空間思維。

二、指導學生實踐

實踐思維是指通過實踐操作解決直觀而具體的問題的思維方式。心理學與教育學均認為:實踐是培養學生空間觀念、建立表象的重要手段。只有當學生的空間觀念得到培養并正確建立表象時,實踐思維才能得到啟迪與發展。

由于小學生年齡小,生活閱歷少,空間想象意識與能力處于初級階段,因此要拓展小學生的空間想象能力,啟迪實踐思維,必須創造條件讓他們經歷實踐操作過程,并在這個過程中解決實際問題。以下以一個教學例子為例,闡述筆者是怎樣指導學生實踐的。

例如,一個長方體容器,從里面量,長20厘米,寬15厘米,高12厘米。原來裝了一些水,水深8厘米,現在把一個小長方體完全浸沒在水中,這時水的高度是10厘米。這個小長方體的體積是多少立方厘米?

由于題中數據多、文字多、情境復雜,相當多的學生看到這樣的題目不知所措。針對這種現狀,在教學中我指導學生以小組為單位進行實踐操作,幫助他們建立表象。

實踐操作步驟:

第一,每個小組配一個透明長方體水槽、一塊可沉于水中的長方體教具、適量的水和一張實驗分析表;

第二,從水槽里面量出水槽的長、寬、高;

第三,在水槽內裝適量的水(水面不低于小長方體的高為宜),并量出這時水的高度;(這時可要求學生計算出水的體積)

第四,往水槽中放于小長方體,使小長方體一定要完全浸沒在水中(水不能溢出水槽),量出這時水的高度;(這時要引導學生理解水上升部分的體積就是小長方體的體積,建立等量替換的思想。)

第五,指導計算小長方體的體積。學生一般采用如下兩種方法:方法一 20×15×10-20×15×8 方法二 20×15×(10-8)

第六,總結分析。組織學生結合實驗過程分析計算方法。

在上述實踐操作過程中,我讓學生體會等量替換的思想方法,實現了從建立表象到啟迪思維的升華。

為加深認識與理解,我還讓學生進行了以下的互逆練習。

例如,一個長方體容器,從里面量,長20厘米,寬15厘米,高12厘米。原來裝了一些水,一個小長方體完全浸沒在水中,水深8厘米。現在把小長方體從水中取出,這時水的高度是6厘米。這個小長方體的體積是多少立方厘米?

在教學中,組織學生根據題意參考上述操作步驟開展實踐操作,就能讓學生加深理解,并能運用所學知識有效解決實際問題。

三、指導學生想象

形象思維是用直觀形象和表象解決問題的思維,是對表象進行加工的思維。啟迪、培養學生的形象思維是小學數學教學工作的重點。在教學中應指導學生在認知的基礎上展開想象,畫出立體圖,以圖形為基礎,建立表象,實現從感性認識到理性認識的提升,啟迪學生的形象思維。在教學中可以通過以下練習來實現這一目標。

例如,一個長方體,如果把它的高減少3厘米就變成一個正方體,它的表面積就減少60平方厘米。這個長方體的體積是多少立方厘米?

大部分學生由于空間想象能力不強,不明白題意,誤以為表面積減少的部分應包括“1個底面和4個側面”。

為了啟迪學生的形象思維,在教學中應指導學生在認知的基礎上展開想象,畫圖分析(如圖1),建立表象,正確解決問題。

學生通過想象、畫圖,明白當長方體的高減少3厘米,剩下部分(正方體)與原來的長方體一樣有2個底面和4個側面,剩下的正方體跟原來的長方體相比只是減少了截去部分的4個側面。在此基礎上,引導學生根據“如果把它的高減少3厘米就變成一個正方體”深入分析,可知上面的小長方體的前、后、左、右4個面是相同的。

于是,第一步求出上面小長方體的前面的面積是60÷4=15(平方厘米),它的長(也就是下面正方體的棱長)15÷3=5(厘米),原來長方體的長5厘米、寬5厘米、高5+3=8(厘米),體積:5×5×8=200(立方厘米)。

又如,一根長方體木料,長60厘米,如果把它截成5段小長方體木料,這5段小長方體木料的表面積之和比原來增加200平方厘米,這根木料原來的體積是多少立方厘米?

由于這類題目涉及鋸木問題、長方體表面積、體積等知識,學生難以理解,也難以將這些知識聯系起來、構成知識體系,因此學生難以正確解答。在教學過程中,要根據題意組織學生展開想象,畫圖(如圖2)分析,引導學生理解每截1次就會增加2個面,截成5段,共需截5-1=4(次),這5段小長方體的表面積之和跟原來的表面積相比,增加了2×4=8個橫截面的面積,也就是說這8個橫截面的面積之和是200平方厘米,則原來長方體的橫截面的面積是200÷8=25(平方厘米),木料原來的體積是25×60=1500(立方厘米)。

上述兩個例子,學生通過想象、畫圖,建立具有直觀性的表象,深入分析、加工,正確解決實際問題。在這個過程中,學生的形象思維得到啟迪與發展。

綜上所述,我們在教學過程中應遵循學生的心理規律和認知規律,以啟迪學生思維為目標,指導學生觀察、實踐和想象,讓他們經歷從文字語言到圖形語言、從抽象分析到形象分析、從感性認識到理性認識的轉變過程,建立表象,其思維必然會得到有效啟迪與發展。

篇8

【關鍵詞】觀察能力 培養 訓練 提高

小學生認識事物帶有很大的形象性。課堂上,多給學生具有感性的材料,能使學生逐步學會抽象出數學概念的方法。因此,在數學教學中培養學生的觀察能力顯得極其重要。

在培養學生觀察力的過程中,要循序漸進地指導他們懂得看問題應該從什么角度看,要教會他們注意分析、認知、比較。例如,九年制義務教育(人教版)五年級下冊第二單元的長方體、正方體的認識。教師手里拿著一個長方體教具告訴學生,這就是我們要學習的幾何圖形長方形,然后讓學生舉例說明在我們現實生活中那些物體的形狀、大小不同,但都是長方體。如果到此為止,學生僅能看到長方體的表象,這是不夠的。要在這個基礎上,讓學生透過現象看本質,引導學生觀察長方體的本質特征,要求他們從三個方面觀察(面、棱、頂點),長方體共有幾個面?有幾條棱?相對棱的長度怎樣?有幾個頂點?接著,教師再進一步要求學生觀察長方體有什么特征?

然后,讓學生觀察。在認真觀察的基礎上概括出其特征:有6個面,每個面都是長方形,也可能有2個相對的面是正方形,相對面的面積相等;有12條棱,相對棱的長度相等;有8個頂點。接著,將長方形用多角度擺放(目的是加深學生對新知識的真正理解)問學生是否還是長方體?學生通過觀察,認識到判斷長方體要看面、棱及頂點,與圖形放置的位置無關。這就加深了學生對長方體本質特征的認識。這個時候,教師再拿出正方體教具讓學生觀察,讓學生說出這個形體與長方體有什么相同點和不同點。通過觀察學生認識到他們都有6個面,相對面積都相等,都有12條棱,相等棱的長度都相等;都有8個頂點。不同點為長方體每個面一般都是長方形(也可能有2個相對的面是正方形),而這個形體,每個面都是正方形。由此引出正方體的概念。

一、引出正方體的概念,首先讓學生進行互動

(1)擺正方體,初步感受。初步體會正方體的長、寬、高的數量,并與長方體進行比較,找出異同點。

(2)量正方體。先用若干個1立方厘米的小正方體直接測量繪出的長方體的體積(長方體的長、寬、高要恰好是1厘米的倍數,便于學生測量計算)。學生利用經驗,通過思考,進一步體會正方體的長、寬、高與體積的關系。

二、利用新舊知識,列出數量關系

充分利用已有的知識來搭橋鋪路,引導學生運用知識遷移規律,培養學生的觀察能力。如在教加減法各部分的關系時,我先復習了加法各部分的名稱,然后引導學生從42+38=80中得出:80—38=42;80—42=38;通過比較觀察,讓學生總結出求加數的公式:一個加數=和—另一個加數。這樣,學生的觀察能力也就得到了加強。

三、邊讀題,邊觀察

學生讀好幾遍,還是解決不了的問題,有時甚至無從下手。這時就應該讓學生畫畫圖,邊觀察,邊思考,再解決問題。例如:三年級上冊第40頁第6題(圖略):“從熊貓館到老虎館走哪條路最近?”要讓學生仔細去觀察,使學生清楚地認識到,要求出每條路的總米數,然后從三條路的長短進行比較,學生就能迎刃而解了。

四、注重觀察,減緩學生思維坡度

引出問題:小紅從家到學校走了13分鐘,如用同樣的速度從家到少年宮要走幾分鐘?她從學校到少年宮呢?

分析問題:先引導學生理解“速度”一詞的含義,抓住“速度”不變一詞,便能收到很好的效果。

解決問題:

(1)845÷13=65(米)——不變量(題中所述“用同樣的速度)

(2)從家到少年宮要走幾分鐘?520÷65=8(分鐘)

篇9

數學課程標準指出:“評價的主要目的是全面了解學生數學學習的過程和結果,激勵學生學習和改進教師教學。”由此可見,在數學評價中,我們不僅要對學生的學習結果進行評價,還要對學生的學習過程進行評價。但是,在平時的教學中,教師往往只重視學生學習結果的評價,忽略了學習過程的評價,這是一種錯誤的評價觀。所以,我們要重視學習過程的評價,以促進學生更好地學習數學。下面,筆者就結合蘇教版小學五年級下冊“長方體和正方體的認識”的教學來談一談如何開展過程性評價。

【教學片斷一】

教師給每一個學習小組分發了若干個長方體與正方體,讓學生說一說哪些是長方體,哪些是正方體,并把它們進行分類。

師:同學們已經把這些長方體與正方體進行了分類。你們再觀察一下這些長方體與正方體,發現了什么?

生1:我發現長方體與正方體都有6個面。

生2:我也發現了這一點。

師:不錯,你們的發現很正確。

生3:我還發現,長方體與正方體都有12條邊,有8個頂點,每條頂點都是向三個方向射出三個邊來。

師:沒想到你一下子發現了這么多,看來你的觀察是非常認真仔細的。這12條邊我們把它叫做長方體的棱,8個頂點就叫做長方體的頂點。

生4:我發現長方體相對的兩個面是一樣的,而正方體六個面的面積都相等。

師:你是怎么知道的?

生4:我量了一下,每一個長方體都有4條棱長度是一樣的,而相對的兩個面的長與寬是一樣的,所以它們面積是相等的。正方體的每一條棱長都相等,所以6個面的面積也一定是相等的。

師:嗯,你是一個有心的孩子,除了用眼來看,還想到了用手來量,你的發現值得其他同學學習。

沒想到教師的一句評價后學生都爭先恐后地舉起了小手說出自己最新的發現……

【教學片斷二】

教師請學生用手中的小棒制作長方體與正方體,并在全班交流。

師:制作完漂亮的長方體與正方體,你又有什么發現?

生1:我覺得在制作時,首先要選擇3種長度的小棒,每種長度的小棒選4根,這樣才能制作出一個長方體來,而正方體選的12根小棒要一樣長。

師:你能在制作之前先思考如何選材,如何制作,說明你是一個肯思考的學生,你真棒。

生2:我發現長方體與正方體唯一的區別是正方體六個面都一樣,而長方體最多有四個面是一樣的。

師:你能從所制作的長方體與正方體中發現問題,非常了不起。

生3:通過制作的長方體與正方體,我想我家的糖果盒是長方體,教師講臺上的粉筆盒是正方體。

師:能列舉生活中遇到的長方體與正方體,說明你是一個熱愛生活的好孩子。

生4:我來總結一下吧,長方體與正方體都有6個面、8個頂點、12條棱,長方體相對的兩個面一樣,而正方體六個面都一樣,長方體中最少有4條棱長是相等的,而正方體中12條棱長都相等。

師:你能從別的同學發言中受到啟發,并作出總結,真是一個認真聽講、積極思考、善于總結的孩子。大家還有什么發現?

……

在本案例的教學中,教師非常注意對學生的評價。從總體上來看,該教師在課堂上充分地激發了學生的潛能,再貫穿恰如其分的評價,使學生各方面的能力都得到了提升。所以,在進行過程性評價時,應把握好以下三點。

一、創設和諧環境,讓學生樂于評價

學生只有在一種民主、平等、和諧的環境中,才能積極思考,勇于發言,才能樂于接受教師的評價。就像教學案例中那樣,教師一直為學生的發言營造一種平等的師生關系,讓學生在一種和諧氛圍中進行互動,學生就容易接受,也容易激發他們學習的興趣與探索的積極性。

二、抓住有效時機,讓學生融入評價

教師在進行過程性評價時,要及時把握好時機。如果時機把握好了,那么評價作用就會起到事半功倍的效果。就好比教學案例中,教師能抓住幾個有效的時機對學生的發言進行及時補充與評價,使學生對長方體與正方體的特征有了更清楚的了解,達到了強化學生對長方體與正方體知識的理解,突破了本節課的教學難點。所以,評價只有做到了適時,才能讓評價真正起到激勵與引導的作用。

三、實行區別對待,讓學生享受評價

不同的學生,他們對知識的理解角度不同,認知程度也不同。教師在實施過程性評價時,要做到區別對待,可以對學生的學習精神與態度進行評價,也可以對學生的學習成果進行評價。總之一句話,讓學生在評價過程中有一種享受的感覺。就像教學片斷二中,教師能根據學生不同的回答,從中尋找閃光點,然后給予積極肯定的評價,在評價中讓學生自然而然地感受到來自教師的關心與愛護。這樣,既能促進學生有效學習,又可以改善教師的教學。

篇10

復習目標:

1、結合實際題目進一步認識長方體的特征,熟練運用長方體體積公式解決有關體積、容積的一些具體問題。

2、進一步提高學生的計算、觀察、比較和判斷能力。

復習重難點:

1、熟練掌握長方體體積公式。

2、熟練運用長方體體積公式解決生活中的具體問題。

教學過程:

一、知識梳理

1、結合自己對本單元的學習理解,完成知識框架圖:

2、展示學生典型的知識樹:

二、基礎練習

一、判斷題:(對的畫“√”,錯的畫“×”)

(1)長方體中,有時有兩個相對的面是正方形。 ( )

(2)正方體的六個面的面積都相等。 ( )

(3)長方體中有時四個面是完全一樣的長方形。 ( )

(4)當正方體的棱長是6厘米,它的表面積和體積就相等。( )

二、在橫線上填空:

1、一個正方體,棱長是4分米。這個正方體棱長之和是_____;表面積是_____;體積是______。

2、一個長方體,長2米,寬3分米,高4厘米。這個長方體的表面積是____平方分米;體積是____立方米。

3、一根長方體木料,寬3分米,厚2厘米,體積0.12立方米。這根木料的長是____米;放在地上,占地面積最大是_____平方分米。

4、把三個棱長是2分米的正方體拼成一個長方體,表面積是( ),體積是( )。

5、一個正方體的棱長如果擴大2倍,那么表面積擴大( )倍,體積擴大( )倍

6、有一根長52厘米的鐵絲,恰好可以焊接成一個長6厘米,寬4厘米,高( )厘米的長方體。

三、應用題

(1) 有一塊正方形鐵皮,從四個頂點分別剪下一個邊長2厘米的正方形后,所剩部分正好焊接成一個無蓋的正方體鐵皮盒。原來正方形鐵皮的面積是多少平方厘米?

(2)建一個游泳池,要挖一個長50米,寬20米,深1.5米的坑。挖土機每小時可挖土25立方米,如果每天工作8小時,多少天可以挖完?

四、拓展練習

1、一個長方體的長寬高分別是a ,b, h,如果高增高3米,那么表面積比原來增加( )平方米,體積增加( )立方米。

2、將一根長方體木料橫截成兩段完全相同的長方體木塊時,表面積增加了48平方厘米,每段木料長2米,求這根木料原平的體積是多少立方分米?

3有一個底面積是300平方厘米,現在把一塊底面積60平方厘米的長方體特快浸沒到水里,水面上升2厘米。這塊鐵高幾厘米?

五、清理疑難

通過復習有關長方體的相關知識體系,又進行了相關的練習,我們目前在這一單元還存在一些問題:

1、對題目分析還不夠仔細,簡單問題復雜化。

2、計算水平不夠扎實,有待提高。

思考:有一個底面積是300平方厘米,現在把一塊底面積60平方厘米的長方體特快浸沒到水里,水面上升2厘米。這塊鐵高幾厘米?

解決這一類題目的關鍵:

(1)弄清鐵塊體積與上升水體積相同。

(2)注意公式V=S.h中的各個量與實物的對應關系。