高中生物教案-第二節 組成生物體的化合物

時間:2022-02-15 10:14:00

導語:高中生物教案-第二節 組成生物體的化合物一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

高中生物教案-第二節 組成生物體的化合物

一、知識結構

二、教學目的

1.組成生物體的水、無機鹽、糖類、脂質、蛋白質、核酸這幾種化合物的化學元素組成、在細胞內的存在形式和重要的功能(C:理解)。

2.組成生物體的無機化合物和有機化合物是生命活動的基礎(C:理解)。

3.各種化合物只有按照一定的方式有機地組織起來,才能表現出細胞和生物體的生命現象(A:知道)。

三、重點和難點

1.教學重點

組成生物體的無機化合物和有機化合物的化學元素組成,各種化合物在細胞中的存在形式和重要功能。

2.教學難點

(1)蛋白質的化學元素組成、相對分子質量、基本組成單位、分子結構和主要功能。

(2)核酸的化學元素組成、相對分子質量、基本組成單位和重要功能。

四、教學建議

本節的教學內容較多而時間又較緊,教師要注意合理分配時間,突出重點和難點。建議教師對水、無機鹽、糖類和脂質的內容安排1課時,蛋白質和核酸的內容安排1課時,學生實驗用1課時。

在本節教學的開始,教師可以利用教材中講到的細胞內各種化合物的含量表,從整體上概括出構成細胞的化合物;指出生命的物質基礎,是以蛋白質和核酸為主體的多分子體系。公務員之家,全國公務員共同天地

在講授無機化合物水時,可以從水在細胞、組織中兩種存在形式的分析入手,引出水的作用。引導學生理解水的含量與生命活動的狀態密切相關。在講述水時,要注意滲透出兩種形式的水存在著動態轉化,不能截然分開。如果能恰當地運用生活常識,說明水的存在狀態和作用,將會更吸引學生,使學生加深對水的認識。

關于無機鹽的教學,可以從學生已知的知識中提出問題,通過簡明的分析,使學生懂得無機鹽的存在形式和作用。例如,為什么在觀察動物和人的細胞時,要用一定濃度的生理鹽水?為什么長期缺乏鐵會出現缺鐵性貧血?從這些問題的分析過程中,歸納出無機鹽對維持細胞形態、參與重要的物質組成等作用。

關于糖類的教學,應該盡量聯系學生生活中經常接觸的糖類物質,提高學生的學習興趣,增加感性認識。在本節教學中,要注意適當突出后邊將要應用的糖類知識,這樣可以為進一步的學習打下知識基礎。通過講述糖類的水解作用,使學生理解單糖、二糖、多糖三者的區別和聯系。關于糖類的作用,既要突出它是生命系統賴以維持的主要能源物質,又要點出它是細胞許多結構中不可缺少的成分。

關于脂質的教學,似乎可以滲透儲存脂質(脂肪)、結構脂質(磷脂等類脂)、功能脂質(固醇)的提法,這樣有利于學生對不同脂質的作用特點的理解。在學生條件較好的學校,可以分析一下磷脂分子的特點,為學習細胞膜的結構打下基礎。

蛋白質的內容是本節教學的重點和難點。教師在講述蛋白質的組成和結構時,可以按照以下教學思路來設計教學過程:①通過列舉水、葡萄糖、幾種蛋白質的相對分子量,使學生認識到蛋白質屬于生物大分子;②指出對生物大分子結構的研究,常采取分層次認識的方法;③對蛋白質的組成和結構的教學,可從有關元素、基本單位──氨基酸、肽、肽鏈間的結合和卷曲、折疊而成的空間結構等幾個層次逐步深入。

在講述氨基酸時,可以從甲烷、乙酸、甘氨酸漸漸引入。隨著羧基(-COOH)、氨基(-NH2)的出現,指出它們的化學特性。在認識了甘氨酸的基礎上,再進一步變換R基,認識幾種其他氨基酸。最后,歸納總結出氨基酸的共同點和區別。

在講述肽時,要注意講清縮合、肽鍵、二肽、多肽和肽鏈的概念。要指出每種多肽都具有特定的氨基酸種類、數目和排列順序,這種特點決定著肽鏈的空間結構,從而為學生理解多肽間的區別和蛋白質的多樣性打下基礎。

對于蛋白質的空間結構,教師不必詳細講述,可以讓學生通過對教材中某種胰島素空間結構示意圖的觀察,了解蛋白質具有一定的空間結構就可以了。但是應該對學生指出,蛋白質的生理作用依賴于自身特定的空間結構。

在講述蛋白質的功能時,應該注意從列舉典型的、易于理解的例子中,概括出蛋白質是構成細胞和生物體結構的重要成分和在生命活動中發揮的重要作用。

另外,關于蛋白質結構內容的教學,要充分利用剪貼圖、投影片和教材中的示意圖,來幫助學生理解動態的、抽象的知識內容。

關于核酸的教學,要注意處理好與《遺傳與變異》一章有關內容的聯系。本節對核酸化學元素的組成和基本組成單位的認識,可以從介紹分析生物大分子的方法入手,使學生初步了解核酸分子的元素組成、基本單位──核苷酸和多核苷酸鏈。應指出DNA和RNA兩類核酸在組成上的區別和DNA的主要作用。

在本章的最后,教師要強調說明,任何一種化合物或幾種化合物的混合都不能完成生命活動。細胞內的各種化合物必須按照一定的方式組成特定的結構,才能在生命活動中發揮作用。

五、參考答案

復習題一、③,①,④,②。

二、1.(A);2.(A);3.(D)。

三、1.因為這兩種蛋白質的分子結構不同(即氨基酸的種類不同,排列次序不同,空間結構不同),所以它們的功能也不相同。

2.細胞內的各種化合物必須按照一定方式組成特定的結構,才能在生命活動中發揮作用。

旁欄思考題老年人容易發生骨折是因為隨著年齡的增長,機體代謝發生變化而導致骨質疏松造成的。骨質疏松主要是缺少了骨的重要成分碳酸鈣。

臨床上醫生給病人點滴輸入葡萄糖液,可以起到給病人提供水、營養和增加能量的作用。因為葡萄糖氧化分解時釋放大量的能量,可以供給病人生命活動的需要,有利于早日康復。此外,細胞中水的含量最多。病人維持各項生命活動,絕對不能缺少水。

實驗討論題實驗一1.某些化學試劑與生物組織中的有關有機化合物發生一定的化學作用后,能夠生成新的化學物質,而這種化學物質是有固定的顏色的。根據實驗中所產生的特定的顏色反應,如磚紅色、橘黃(或紅)色、紫色,可以分別鑒定生物組織中有糖、脂肪、蛋白質的存在。

六、參考資料

細胞的化學組成細胞中各種化合物的平均值如下表(表1-1):

表1-1細胞中各種化合物的平均值

化合物

質量分數%

平均相對

分子質量

種類

85.0

1.8×10

游離形式的水和結合形式的水

蛋白質

10.0

3.6×104

清蛋白、球蛋白、組蛋白、核蛋白等

DNA

0.4

1.0×106

RNA

0.7

4.0×105

脂質

2.0

7.0×102

脂肪、磷脂等

糖類及其

他有機物

0.4

2.5×102

單糖、二糖、多糖等

其他

無機物

1.5

5.5×10

Na+、K+、Ca2+、Mg2+、

Cl-、SO42-、PO43-等

在組成細胞的各種化合物中,水是含量最多的物質,是生命活動的最重要的介質。地球表面出現了液態水時,才具備了生命發生的條件。但是,只有當原始地球的物質經過漫長的演變,出現了原始的核酸和蛋白質并且組合在一起,表現出原始的新陳代謝時,才開始出現原始的生命現象,產生了原始的生命。恩格斯早在一百多年前就已提出“生命是蛋白體的存在方式”。現代生物科學認為,承擔生命的“蛋白體”主要是核酸和蛋白質的整合體系。因此說,細胞的主要成分是蛋白質和核酸。

水在生物體和細胞內的存在狀態

1.結合水吸附和結合在有機固體物質上的水,主要依靠氫鍵與蛋白質的極性基(羧基和氨基)相結合形成親水膠體。多糖、磷脂也以親水膠體形式存在。這部分水不能蒸發、不能析離,失去了流動性和溶解性,是生物體的構成物。

2.自由水填充在有機固體顆粒之間的水分,可流動、易蒸發,加壓力后可析離,是可以參與物質代謝過程的水。

水在生物體內的作用水是生命存在的環境條件,同時也是生活物質本身化學反應所必需的成分。水對于維持生物體的正常生理活動有著重要的意義,因此水是生物體內不能缺少的物質。

1.水是細胞內的良好溶劑生物體內的大部分無機物及一些有機物,都能溶解于水。水是物質擴散的介質,也是酶活動的介質。細胞內的各種代謝過程,如營養物質的吸收,代謝廢物的排出,以及一切生物化學反應等,都必須在水溶液中進行。

2.水的其他作用①由于水分子的極性強,能使溶解于其中的許多種物質解離成離子,這樣也就有利于體內化學反應的進行。②由于水溶液的流動性大,水在生物體內還起到運輸物質的作用,將吸收來的營養物質運輸到各個組織中去,并將組織中產生的廢物運輸到排泄器官,排出體外。③水的熱容大,1g水從15℃上升到16℃時需要4.18J熱量,比同量其他液體所需要的熱量多,因而水能吸收較多的熱而本身溫度的升高并不多。水的蒸發熱較大,1g水在37℃時完全蒸發需要吸熱2.40kJ,所以人蒸發少量的汗就能散發大量的熱。再加上水的流動性大,能隨血液循環迅速分布全身,因此水對于維持生物體溫度的穩定起很大作用。④水還有潤滑作用。⑤對植物來說,水能保持植物的固有姿態。由于植物的液泡里含有大量的水分,因而可以維持植物細胞的形態而使枝葉挺立,便于接受陽光和交換氣體,保證正常的生長發育。⑥對生物體的生命活動起重要的調控作用。生物體內水含量的多少以及水的存在狀態的改變,都影響著新陳代謝的進行。一般情況下,生物體內的含水量在70%以上時代謝活躍;含水量降低,則代謝不活躍或進入休眠狀態。當自由水比例增加時,生物體的代謝活躍,生長迅速;而當自由水向結合水轉化較多時,代謝強度就會下降,抗寒、抗熱、抗旱的性能提高。

無機鹽無機鹽在細胞中的含量雖然不多,卻是生命活動所必需的。如果將一塊組織放在蒸餾水中,從細胞中去掉鹽類,該組織就會死亡。許多無機鹽在細胞中呈離子狀態存在。無機鹽在生物體和細胞中的作用主要有以下幾點。

1.是構成細胞或構成生物體某些結構的重要成分。

2.參與并調節生物體的代謝活動。有些無機離子是酶、激素或維生素的重要成分。例如,含鋅的酶最多,已知有70多種酶的活性與鋅有關;鈷(Co)是維生素B12的必要成分,參與核酸的合成過程;鐵(Fe)參與組成血紅蛋白、細胞色素等,參與氧的運輸和呼吸作用中的電子傳遞過程等。

3.維持生物體內的平衡。體內平衡是使細胞具有穩定的結構和功能,使生物能維持正常的代謝和生理活動的必要條件。有關體內平衡的內容很復雜,情況多變。其中的3個主要方面與無機鹽含量的穩定密切相關。

(1)滲透壓平衡:細胞內外的無機鹽的含量是維持細胞滲透壓的重要因素。

(2)酸度平衡(即pH平衡):pH調節著細胞的一切生命活動,它的改變影響著細胞組成物的所有特性以及在細胞內發生的一切反應。例如,各種蛋白質對于pH的改變非常敏感,人體血漿pH降低0.5時,人就立即發生酸中毒。無機離子如HPO42-/H2PO4-和H2CO3/HCO3-等,組成重要的緩沖體系來調節并維持pH平衡。

(3)離子平衡:動物細胞內外的Na+/K+/Ca2+的比例是相對穩定的。細胞膜外Na+高、K+低,細胞膜內K+高、Na+低。K+、Na+這兩種離子在細胞膜內外分布的濃度差,是使細胞保持反應性能的重要條件。此外,在細胞膜外Na+多、Ca2+少時,神經細胞就會失去穩定性,對于外來刺激就會過于敏感。

糖類的分布和功能糖類是生物體的主要能源物質和重要的組成成分,在自然界中分布極廣,幾乎所有的動物、植物、微生物的體內都有它,尤以存在于植物體內的為最多,約占植物體干重的80%。在植物體內,構成根、莖、葉骨架的主要成分是纖維素多糖。在植物種子或果實里的主要儲存物質,如淀粉、蔗糖、葡萄糖、果糖等都屬于糖類。在動物血液中的血細胞內,也有葡萄糖或由葡萄糖等單糖縮合成的多糖存在,在肝臟、肌肉里的多糖是糖元。人和動物的組織器官中所含的糖類,不超過身體干重的2%。微生物體內的含糖量約占身體干重的10%~13%,其中有的呈游離狀態,有的與蛋白質、脂肪結合成復雜的物質,這些物質一般存在于細胞壁、黏液或莢膜中,也有的形成糖元或類似淀粉的多糖存在于細胞質中。

糖類的功能有以下幾點。(1)糖類是生物體的主要能源和碳源物質:糖類物質可以通過分解而放出能量,這是生命活動所必需的。糖類還可以在生物體內轉化成其他化合物(如某些氨基酸、核苷酸、脂肪酸等),并提供碳原子和碳鏈骨架,是構成組織和細胞的成分。(2)糖類與生物體的結構有關:纖維素和殼多糖都不溶于水,有平坦伸展的帶狀構象,并且堆砌得很緊密,所以它們彼此之間的作用力很強,適于作強韌的結構材料。纖維素是植物細胞壁的主要成分。殼多糖是昆蟲等生物體外殼的主要成分。細菌的細胞壁由剛性的肽聚糖組成,它們保護著細胞膜免受機械力和滲透作用的損傷。細菌的細胞壁還使細菌具有特定的形狀。(3)糖類是儲藏的養料:糖類以顆粒狀態儲存于細胞質中,如植物的淀粉、動物肝臟和肌肉中的糖元。(4)糖類是細胞通訊識別作用的基礎:細胞表面可以識別其他細胞或分子,并接受它們攜帶的信息,同時細胞也通過表面上的一些大分子來表現其本身的活性。細胞與細胞之間的相互作用,是通過一些細胞表面復合糖類中的糖和與其互補的大分子來完成的。(5)糖類具有潤滑保護作用:黏膜分泌的黏液中有黏稠的黏多糖,可以保護潤滑的表面。關節腔的滑液就是透明質酸經過大量水化而形成的黏液。

磷脂和糖脂磷脂是構成生物膜的主要成分。它廣泛分布在動植物組織中。磷脂在動物體內多存在于腦和神經組織中,在心臟和肝臟中的含量也不少;植物的種子中含磷脂也比較多,如大豆種子的磷脂達2%。磷脂大多不溶于丙酮,不溶于水,但像親水膠體一樣,能在水中膨脹并形成乳狀液或膠體溶液。磷脂的種類很多,有卵磷脂、腦磷脂、神經磷脂等。

卵磷脂又稱蛋黃素,大量存在于各種動物的組織和器官中,尤其在蛋黃、腦、腎上腺、紅細胞中的含量較多。蛋黃中卵磷脂的含量可達8%~10%。許多種種子,如大豆、向日葵的種子也含有卵磷脂。

糖脂是一類具有一般脂質溶解性質的含糖脂質,包括腦糖脂、神經節糖脂、甘油醇糖脂等。

磷脂和糖脂都是構成生物膜的磷脂雙分子層結構的基本物質,也是某些生物大分子化合物(如脂蛋白和脂多糖)的組成成分。

類固醇和固醇類固醇又稱“甾族化合物”,是環戊烷多氫菲類化合物的總稱,一般具有重要的生理作用,在自然界廣泛分布,也有人工合成的。類固醇的主要種類和分布情況如下。

1.自然界存在的

(1)固醇類。固醇又稱“甾醇”,是含羥基的環戊烷駢全氫菲類化合物的總稱,以游離狀態或同脂肪酸結合成酯的狀態存在于生物體內,最重要的有膽固醇、豆固醇和麥角固醇(表1-2)。

表1-2固醇的主要種類和分布情況

類別

固醇名稱

分布

動物固醇

膽固醇

脊椎動物體內

7-脫氫膽固醇

皮膚和毛發內

糞固醇

動物糞便中

植物固醇

麥固醇

麥芽中

豆固醇

大豆中

谷固醇

高等植物中分布很廣

酵母固醇

麥角固醇

麥角、酵母菌和毒菌內

(2)固醇衍生物。常見的有:強心苷,如洋地黃毒素,存在于洋地黃植物的葉中,是一種強心藥;蟾毒素,是蟾蜍分泌的毒素,可作藥用;膽酸、膽汁酸組成的膽汁;腎上腺皮質激素、昆蟲的蛻皮激素、性激素(包括雌激素、孕激素和雄激素等),能調節動物和人體的新陳代謝及生殖、發育等生理活動。此外,維生素D有利于機體對鈣、磷的吸收。腎上腺皮質激素、膽酸、性激素、維生素D等物質,在人體內都可以由膽固醇轉化而來。

2.人工合成的類固醇藥物如抗炎劑、促蛋白合成類固醇、口服避孕藥等。

氨基酸的R基團每個氨基酸都有一個R基,R基也叫側鏈基團,不同氨基酸的R基是不同的。例如,甘氨酸的R基只是一個氫原子;有些氨基酸的R基屬于烴基;有些則含有某種官能團,如羥基(—OH)、巰基(—SH)、氨基(—NH2)、羧基(—COOH)等。

根據氨基酸所連接的R基化學結構的不同,可以將氨基酸分成脂肪族氨基酸、芳香族氨基酸、雜環氨基酸、雜環亞氨基酸四大類。

甘氨酸惟一不含有不對稱碳原子的最簡單的非必需氨基酸。廣泛存在于蛋白質中。

丙氨酸即L-α-氨基丙酸。一種屬于丙酮酸代謝體系的非必需氨基酸。

蛋白質分子的結構通常將蛋白質的結構分為一級結構、二級結構、三級結構和四級結構(圖1-1)。

圖1-1蛋白質分子的一、二、三、四級結構示意圖

1.蛋白質的一級結構:又稱為初級結構或化學結構,是指蛋白質分子中,由肽鍵連接起來的各種氨基酸的排列順序。目前可以運用氨基酸自動分析儀和氨基酸順序自動分析儀,對蛋白質的一級結構進行測定。

2.蛋白質的二級結構:蛋白質的二級結構是指蛋白質分子中多肽鏈本身的折疊方式。近些年來,通過研究知道,蛋白質分子的多肽鏈本身一般不是全部以松散的線形分子狀態存在于生物體內的,而是部分卷曲、盤旋成螺旋狀(一般呈所謂α螺旋),或折疊成片層狀(又稱β折疊),或呈β回折(發夾回折、U形轉折),或呈無規則卷曲。蛋白質的二級結構主要依靠氫鍵來維持結構的穩定性。

3.蛋白質的三級結構:具有二級結構的肽鏈,按照一定方式進一步卷曲、盤繞、折疊成一種看來很不規則,而實際上有一定規律性的三維空間結構,叫做三級結構。這些肽鏈所以會卷曲、盤繞、折疊,主要是因為肽鏈的側鏈之間的相互作用。

4.蛋白質的四級結構:具有三級結構的蛋白質分子,通過一些非共價鍵結合起來,而成為具有生物功能的蛋白質大分子,就是蛋白質的四級結構。構成蛋白質功能單位的每條肽鏈,稱為亞基。亞基雖然只具有二、三級結構,但是在單獨存在時并沒有生物活力,只有完整的四級結構才具有生物活力。例如,磷酸化酶是由2個亞基構成的,馬血紅蛋白是由4個不同的亞基(2個α肽鏈,2個β肽鏈)構成的,谷氨酸脫氫酶是由6個相同的亞基構成的。

有些蛋白質分子只有一、二、三級結構,并無四級結構,如肌紅蛋白、細胞色素c、核糖核酸酶、溶菌酶等。另一些蛋白質則一、二、三、四級結構同時存在,如血紅蛋白、谷氨酸脫氫酶等。

調節生理活動的許多激素是蛋白質從化學本質上看,人和動物的激素可以分為4類:①氨基酸衍生物激素(如甲狀腺激素、腎上腺素、血清血管收縮素);②肽和蛋白質類激素(如腦垂體激素、胰島素、甲狀旁腺素、生長素和促腎上腺皮質激素);③類固醇激素(如腎上腺皮質激素、性激素);④脂肪酸衍生物激素(如前列腺素)。

肽和蛋白質類激素,包括許多種激素。下面重點介紹胰島素、生長素和促腎上腺皮質激素。

1.胰島素:胰島素是胰腺內的胰島β細胞公務員之家,全國公務員共同天地所產生的一種激素。胰島素是一種相對分子質量較小的蛋白質,在有鋅和其他金屬離子存在時,胰島素分子可以圍繞這些離子形成聚合體。在調節糖類、脂肪和蛋白質的代謝中具有十分重要的作用。

2.生長素:生長素是由腦垂體中腺垂體內的嗜酸細胞分泌的激素之一。它是一種多肽,能促進骨骼、肌肉、結締組織和內臟的生長,使生物體長得高大;可以使氨基酸進入細胞的速度加快;可以促進DNA和RNA的合成;還能促進蛋白質的合成。

3.促腎上腺皮質激素:它也是腺垂體分泌的激素之一,也是一種多肽,能促進腎上腺皮質細胞的增殖,刺激腎上腺皮質激素的合成和分泌。