人工智能法律系統研究論文

時間:2022-10-27 10:25:00

導語:人工智能法律系統研究論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

人工智能法律系統研究論文

【內容提要】本文從法律推理與人工智能的關系角度探討了人工智能法律系統的歷史及發展動力,人工智能法律系統研制對法學理論和法律實踐的價值和意義,特別是為法理學研究提供方法論啟示和思想實驗手段以及輔助司法審判和法律教育培訓中的作用。法理學不僅為人工智能法律系統的研究提供了豐富的思想來源,而且也為其提供了直接的理論指導。此外,還探討了人工智能法律系統研發的困難、策略和應用前景,其中包括立足于人機功能互補而提出的人機系統解決方案。

【關鍵詞】法理學/法律推理/人工智能

【正文】

一、人工智能法律系統的歷史

計算機先驅思想家萊布尼茲曾這樣不無浪漫地談到推理與計算的關系:“我們要造成這樣一個結果,使所有推理的錯誤都只成為計算的錯誤,這樣,當爭論發生的時候,兩個哲學家同兩個計算家一樣,用不著辯論,只要把筆拿在手里,并且在算盤面前坐下,兩個人面對面地說:讓我們來計算一下吧!”(注:轉引自肖爾茲著:《簡明邏輯史》,張家龍譯,商務印書館1977年版,第54頁。)

如果連抽象的哲學推理都能轉變為計算問題來解決,法律推理的定量化也許還要相對簡單一些。盡管理論上的可能性與技術可行性之間依然存在著巨大的鴻溝,但是,人工智能技術的發展速度確實令人驚嘆。從誕生至今的短短45年內,人工智能從一般問題的研究向特殊領域不斷深入。1956年紐厄爾和西蒙教授的“邏輯理論家”程序,證明了羅素《數學原理》第二章52個定理中的38個定理。塞繆爾的課題組利用對策論和啟發式探索技術開發的具有自學習能力的跳棋程序,在1959年擊敗了其設計者,1962年擊敗了州跳棋冠軍,1997年超級計算機“深藍”使世界頭號國際象棋大師卡斯帕羅夫俯首稱臣。

20世紀60年代,人工智能研究的主要課題是博弈、難題求解和智能機器人;70年代開始研究自然語言理解和專家系統。1971年費根鮑姆教授等人研制出“化學家系統”之后,“計算機數學家”、“計算機醫生”等系統相繼誕生。在其他領域專家系統研究取得突出成就的鼓舞下,一些律師提出了研制“法律診斷”系統和律師系統的可能性。(注:SimonChalton,LegalDiagnostics,ComputersandLaw,No.25,August1980.pp.13-15.BryanNiblett,ExpertSystemsforLawyers,ComputersandLaw,No.29,August1981.p.2.)

1970年Buchanan&Headrick發表了《關于人工智能和法律推理若干問題的考察》,一文,拉開了對法律推理進行人工智能研究的序幕。文章認為,理解、模擬法律論證或法律推理,需要在許多知識領域進行艱難的研究。首先要了解如何描述案件、規則和論證等幾種知識類型,即如何描述法律知識,其中處理開放結構的法律概念是主要難題。其次,要了解如何運用各種知識進行推理,包括分別運用規則、判例和假設的推理,以及混合運用規則和判例的推理。再次,要了解審判實踐中法律推理運用的實際過程,如審判程序的運行,規則的適用,事實的辯論等等。最后,如何將它們最終運用于編制能執行法律推理和辯論任務的計算機程序,區別和分析不同的案件,預測并規避對手的辯護策略,建立巧妙的假設等等。(注:Buchanan&Headrick,SomeSpeculationAboutArtificialIntelligenceandLegalReasoning,23StanfordLawReview(1970).pp.40-62.)法律推理的人工智能研究在這一時期主要沿著兩條途徑前進:一是基于規則模擬歸納推理,70年代初由WalterG.Popp和BernhardSchlink開發了JUDITH律師推理系統。二是模擬法律分析,尋求在模型與以前貯存的基礎數據之間建立實際聯系,并僅依這種關聯的相似性而得出結論。JeffreyMeld-man1977年開發了計算機輔助法律分析系統,它以律師推理為模擬對象,試圖識別與案件事實模型相似的其他案件。考慮到律師分析案件既用歸納推理又用演繹推理,程序對兩者都給予了必要的關注,并且包括了各種水平的分析推理方法。

專家系統在法律中的第一次實際應用,是D.沃特曼和M.皮特森1981年開發的法律判決輔助系統(LDS)。研究者探索將其當作法律適用的實踐工具,對美國民法制度的某個方面進行檢測,運用嚴格責任、相對疏忽和損害賠償等模型,計算出責任案件的賠償價值,并論證了如何模擬法律專家意見的方法論問題。(注:''''ModelsofLegalDecisionmakingReport'''',R-2717-ICJ(1981).)

我國法律專家系統的研制于20世紀80年代中期起步。(注:錢學森教授:《論法治系統工程的任務與方法》(《科技管理研究》1981年第4期)、《社會主義和法治學與現代科學技術》(《法制建設》1984年第3期)、《現代科學技術與法和法制建設》(《政法論壇》)1985年第3期)等文章,為我國法律專家系統的研發起了思想解放和理論奠基作用。)1986年由朱華榮、肖開權主持的《量刑綜合平衡與電腦輔助量刑專家系統研究》被確定為國家社科“七五”研究課題,它在建立盜竊罪量刑數學模型方面取得了成果。在法律數據庫開發方面,1993年中山大學學生胡釗、周宗毅、汪宏杰等人合作研制了《LOA律師辦公自動化系統》。(注:楊建廣、駱梅芬編著:《法治系統工程》,中山大學出版社1996年版,第344-349頁。)1993年武漢大學法學院趙廷光教授主持開發了《實用刑法專家系統》。(注:趙廷光等著:《實用刑法專家系統用戶手冊》,北京新概念軟件研究所1993年版。)它由咨詢檢索系統、輔助定性系統和輔助量刑系統組成,具有檢索刑法知識和對刑事個案進行推理判斷的功能。

專家系統與以往的“通用難題求解”相比具有以下特點:(1)它要解決復雜的實際問題,而不是規則簡單的游戲或數學定理證明問題;(2)它面向更加專門的應用領域,而不是單純的原理性探索;(3)它主要根據具體的問題域,選擇合理的方法來表達和運用特殊的知識,而不強調與問題的特殊性無關的普適性推理和搜索策略。

法律專家系統在法規和判例的輔助檢索方面確實發揮了重要作用,解放了律師一部分腦力勞動。但絕大多數專家系統目前只能做法律數據的檢索工作,缺乏應有的推理功能。20世紀90年代以后,人工智能法律系統進入了以知識工程為主要技術手段的開發時期。知識工程是指以知識為處理對象,以能在計算機上表達和運用知識的技術為主要手段,研究知識型系統的設計、構造和維護的一門更加高級的人工智能技術。(注:《中國大百科全書·自動控制與系統工程》,中國大百科全書出版社1991年版,第579頁。)知識工程概念的提出,改變了以往人們認為幾個推理定律再加上強大的計算機就會產生專家功能的信念。以知識工程為技術手段的法律系統研制,如果能在法律知識的獲得、表達和應用等方面獲得突破,將會使人工智能法律系統的研制產生一個質的飛躍。

人工智能法律系統的發展源于兩種動力。其一是法律實踐自身的要求。隨著社會生活和法律關系的復雜化,法律實踐需要新的思維工具,否則,法律家(律師、檢察官和法官)將無法承受法律文獻日積月累和法律案件不斷增多的重負。其二是人工智能發展的需要。人工智能以模擬人的全部思維活動為目標,但又必須以具體思維活動一城一池的攻克為過程。它需要通過對不同思維領域的征服,來證明知識的每個領域都可以精確描述并制造出類似人類智能的機器。此外,人工智能選擇法律領域尋求突破,還有下述原因:(1)盡管法律推理十分復雜,但它有相對穩定的對象(案件)、相對明確的前提(法律規則、法律事實)及嚴格的程序規則,且須得出確定的判決結論。這為人工智能模擬提供了極為有利的條件。(2)法律推理特別是抗辯制審判中的司法推理,以明確的規則、理性的標準、充分的辯論,為觀察思維活動的軌跡提供了可以記錄和回放的樣本。(3)法律知識長期的積累、完備的檔案,為模擬法律知識的獲得、表達和應用提供了豐富、準確的資料。(4)法律活動所特有的自我意識、自我批評精神,對法律程序和假設進行檢驗的傳統,為模擬法律推理提供了良好的反思條件。

二、人工智能法律系統的價值

人工智能法律系統的研制對法學理論和法律實踐的價值和意義,可以概括為以下幾點:

一是方法論啟示。P.Wahlgren說:“人工智能方法的研究可以支持和深化在創造性方法上的法理學反思。這個信仰反映了法理學可以被視為旨在于開發法律分析和法律推理之方法的活動。從法理學的觀點看,這種研究的最終目標是揭示方法論的潛在作用,從而有助于開展從法理學觀點所提出的解決方法的討論,而不僅僅是探討與計算機科學和人工智能有關的非常細致的技術方面。”(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)在模擬法律推理的過程中,法學家通過與工人智能專家的密切合作,可以從其對法律推理的獨特理解中獲得有關方法論方面的啟示。例如,由于很少有兩個案件完全相似,在判例法實踐中,總有某些不相似的方面需要法律家運用假設來分析已有判例與現實案件的相關性程度。但法學家們在假設的性質問題上常常莫衷一是。然而HYPO的設計者,在無真實判例或真實判例不能充分解釋現實案件的情況下,以假設的反例來反駁對方的觀點,用補充、刪減和改變事實的機械論方法來生成假設。這種用人工智能方法來處理假設的辦法,就使復雜問題變得十分簡單:假設實際上是一個新的論證產生于一個經過修正的老的論證的過程。總之,人工智能方法可以幫助法學家跳出法理學方法的思維定勢,用其他學科的方法來重新審視法學問題,從而為法律問題的解決提供了新的途徑。

二是提供了思想實驗手段。西蒙認為,盡管我們還不知道思維在頭腦中是怎樣由生理作用完成的,“但我們知道這些處理在數字電子計算機中是由電子作用完成的。給計算機編程序使之思維,已經證明有可能為思維提供機械論解釋”。(注:轉引自童天湘:《人工智能與第N代計算機》,載《哲學研究》1985年第5期。)童天湘先生認為:“通過編制有關思維活動的程序,就會加深對思維活動具體細節的了解,并將這種程序送進計算機運行,檢驗其正確性。這是一種思想實驗,有助于我們研究人腦思維的機理。”(注:轉引自童天湘:《人工智能與第N代計算機》,載《哲學研究》1985年第5期。)人工智能法律系統研究的直接目標是使計算機能夠獲取、表達和應用法律知識,軟件工程師為模擬法律推理而編制程序,必須先對人的推理過程作出基于人工智能理論和方法的獨特解釋。人工智能以功能模擬開路,在未搞清法律家的推理結構之前,首先從功能上對法律證成、法律檢索、法律解釋、法律適用等法律推理的要素和活動進行數理分析,將法理學、訴訟法學關于法律推理的研究成果模型化,以實現法律推理知識的機器表達或再現,從而為認識法律推理的過程和規律提供了一種實驗手段。法學家則可以將人工智能法律系統的推理過程、方法和結論與人類法律推理活動相對照,為法律推理的法理學研究所借鑒。因此,用人工智能方法模擬法律推理,深化了人們對法律推理性質、要素和過程的認識,使法學家得以借助人工智能科學的敏銳透鏡去考察法律推理的微觀機制。正是在這個意義上,BryanNiblett教授說:“一個成功的專家系統很可能比其他的途徑對法理學作出更多的(理論)貢獻。”(注:BryanNiblett,ExpertSystemsforLawyers,ComputersandLaw,No.29,August1981.note14,p.3.)

三是輔助司法審判。按照格雷的觀點,法律專家系統首先在英美判例法國家出現的直接原因在于,浩如煙海的判例案卷如果沒有計算機編纂、分類、查詢,這種法律制度簡直就無法運轉了。(注:PamelaN.GrayBrookfield,ArtificialLegalIntelligence,VT:DartmouthPublishingCo.,1997.p.402.)其實不僅是判例法,制定法制度下的律師和法官往往也要為檢索有關的法律、法規和司法解釋耗費大量的精力和時間,而且由于人腦的知識和記憶能力有限,還存在著檢索不全面、記憶不準確的問題。人工智能法律系統強大的記憶和檢索功能,可以彌補人類智能的某些局限性,幫助律師和法官從事相對簡單的法律檢索工作,從而極大地解放律師和法官的腦力勞動,使其能夠集中精力從事更加復雜的法律推理活動。

四是促進司法公正。司法推理雖有統一的法律標準,但法官是具有主觀能動性的差異個體,所以在執行統一標準時會產生一些差異的結果。司法解釋所具有的建構性、辯證性和創造性的特點,進一步加劇了這種差異。如果換了鋼鐵之軀的機器,這種由主觀原因所造成的差異性就有可能加以避免。這當然不是說讓計算機完全取代法官,而是說,由于人工智能法律系統為司法審判提供了相對統一的推理標準和評價標準,從而可以輔助法官取得具有一貫性的判決。無論如何,我們必須承認,鋼鐵之軀的機器沒有物質欲望和感情生活,可以比人更少地受到外界因素的干擾。正像計算機錄取增強了高考招生的公正性、電子監視器提高了糾正行車違章的公正性一樣,智能法律系統在庭審中的運用有可能減少某些徇私舞弊現象。

五是輔助法律教育和培訓。人工智能法律系統凝聚了法律家的專門知識和法官群體的審判經驗,如果通過軟件系統或計算機網絡實現專家經驗和知識的共享,便可在法律教育和培訓中發揮多方面的作用。例如,(1)在法學院教學中發揮模擬法庭的作用,可以幫助法律專業學生鞏固自己所學知識,并將法律知識應用于模擬的審判實踐,從而較快地提高解決法律實踐問題的能力。(2)幫助新律師和新法官全面掌握法律知識,迅速獲得判案經驗,在審判過程的跟蹤檢測和判決結論的動態校正中增長知識和才干,較快地接近或達到專家水平。(3)可使不同地區、不同層次的律師和法官及時獲得有關法律問題的咨詢建議,彌補因知識結構差異和判案經驗多寡而可能出現的失誤。(4)可以為大眾提供及時的法律咨詢,提高廣大人民群眾的法律素質,增強法律意識。

六是輔助立法活動。人工智能法律系統不僅對輔助司法審判有重要的意義,而且對完善立法也具有實用價值。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)例如,倫敦大學Imperial學院的邏輯程序組將1981年英國國籍法的內容形式化,幫助立法者發現了該法在預見性上存在的一些缺陷和法律漏洞。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)立法輔助系統如能應用于法律起草和法律草案的審議過程,有可能事先發現一些立法漏洞,避免一個法律內部各種規則之間以及新法律與現有法律制度之間的相互沖突。

三、法理學在人工智能法律系統研究中的作用

1.人工智能法律系統的法理學思想來源

關于人工智能法律系統之法理學思想來源的追蹤,不是對法理學與人工智能的聯系作面面俱到的考察,而旨在揭示法理學對人工智能法律系統的發展所產生的一些直接影響。

第一,法律形式主義為人工智能法律系統的產生奠定了理論基礎。18-19世紀的法律形式主義強調法律推理的形式方面,認為將法律化成簡單的幾何公式是完全可能的。這種以J·奧斯汀為代表的英國分析法學的傳統,主張“法律推理應該依據客觀事實、明確的規則以及邏輯去解決一切為法律所要求的具體行為。假如法律能如此運作,那么無論誰作裁決,法律推理都會導向同樣的裁決。”(注:(美)史蒂文·J·伯頓著:《法律和法律推理導論》,張志銘、解興權譯,中國政法大學出版社1998年9月版,第3頁。)換言之,機器只要遵守法律推理的邏輯,也可以得出和法官一樣的判決結果。在分析法學家看來,“所謂‘法治’就是要求結論必須是大前提與小前提邏輯必然結果。”(注:朱景文主編:《對西方法律傳統的挑戰》,中國檢察出版社1996年2月版,第292頁。)如果法官違反三段論推理的邏輯,就會破壞法治。這種機械論的法律推理觀,反映了分析法學要求法官不以個人價值觀干擾法律推理活動的主張。但是,它同時具有忽視法官主觀能動性和法律推理靈活性的僵化的缺陷。所以,自由法學家比埃利希將法律形式主義的邏輯推理說稱為“自動售貨機”理論。然而,從人工智能就是為思維提供機械論解釋的意義上說,法律形式主義對法律推理所作的機械論解釋,恰恰為人工智能法律系統的開發提供了可能的前提。從人工智能法律系統研制的實際過程來看,在其起步階段,人工智能專家正是根據法律形式主義所提供的理論前提,首先選擇三段論演繹推理進行模擬,由WalterG.Popp和BernhardSchlink在20世紀70年代初開發了JUDITH律師推理系統。在這個系統中,作為推理大小前提的法律和事實之間的邏輯關系,被計算機以“如果A和B,那么C”的方式加以描述,使機器法律推理第一次從理論變為現實。

第二,法律現實主義推動智能模擬深入到主體的思維結構領域。法律形式主義忽視了推理主體的社會性。法官是生活在現實社會中的人,其所從事的法律活動不可能不受到其社會體驗和思維結構的影響。法官在實際的審判實踐中,并不是機械地遵循規則,特別是在遇到復雜案件時,往往需要作出某種價值選擇。而一旦面對價值問題,法律形式主義的邏輯決定論便立刻陷入困境,顯出其僵化性的致命弱點。法律現實主義對其僵化性進行了深刻的批判。霍姆斯法官明確提出“法律的生命并不在于邏輯而在于經驗”(注:(美)博登海默著:《法理學——法哲學及其方法》,鄧正來、姬敬武譯,華夏出版社1987年12月版,第478頁。)的格言。這里所謂邏輯,就是指法律形式主義的三段論演繹邏輯;所謂經驗,則包括一定的道德和政治理論、公共政策及直覺知識,甚至法官的偏見。法律現實主義對法官主觀能動性和法律推理靈活性的強調,促使人工智能研究從模擬法律推理的外在邏輯形式進一步轉向探求法官的內在思維結構。人們開始考慮,如果思維結構對法官的推理活動具有定向作用,那么,人工智能法律系統若要達到法官水平,就應該通過建立思維結構模型來設計機器的運行結構。TAXMAN的設計就借鑒了這一思想,法律知識被計算機結構語言以語義網絡的方式組成不同的規則系統,解釋程序、協調程序、說明程序分別對網絡結構中的輸入和輸出信息進行動態結構調整,從而適應了知識整合的需要。大規模知識系統的KBS(KnowledgeBasedSystem)開發也注意了思維結構的整合作用,許多具有內在聯系的小規模KBS子系統,在分別模擬法律推理要素功能(證成、法律查詢、法律解釋、法律適用、法律評價、理由闡述)的基礎上,又通過聯想程序被有機聯系起來,構成了具有法律推理整體功能的概念模型。(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)

第三,“開放結構”的法律概念打開了疑難案件法律推理模擬的思路。法律形式主義忽視了疑難案件的存在。疑難案件的特征表現為法律規則和案件之間不存在單一的邏輯對應關系。有時候從一個法律規則可以推出幾種不同的結論,它們往往沒有明顯的對錯之分;有時一個案件面對著幾個相似的法律規則。在這些情況下,形式主義推理說都一籌莫展。但是,法律現實主義在批判法律形式主義時又走向另一個極端,它否認具有普遍性的一般法律規則的存在,試圖用“行動中的法律”完全代替分析法學“本本中的法律”。這種矯枉過正的做法雖然是使法律推理擺脫機械論束縛所走出的必要一步,然而,法律如果真像現實主義法學所說的那樣僅僅存在于具體判決之中,法律推理如果可以不遵循任何標準或因人而異,那么,受到挑戰的就不僅是法律形式主義,而且還會殃及法治要求實現規則統治之根本原則,并動搖人工智能法律系統存在的基礎。哈特在法律形式主義和法律現實主義的爭論中采取了一種折中立場,他既承認邏輯的局限性又強調其重要性;既拒斥法官完全按自己的預感來隨意判案的見解,又承認直覺的存在。這種折中立場在哈特“開放結構”的法律概念中得到了充分體現。法律概念既有“意義核心”又有“開放結構”,邏輯推理可以幫助法官發現問題的陽面,而根據社會政策、價值和后果對規則進行解釋則有助于發現問題的陰面。開放結構的法律概念,使基于規則的法律推理模擬在受到概念封閉性的限制而對疑難案件無能為力時,找到了新的立足點。在此基礎上,運用開放結構概念的疑難案件法律推理模型,通過邏輯程序工具和聯想技術而建立起來。Gardner博士就疑難案件提出兩種解決策略:一是將簡易問題從疑難問題中篩選出來,運用基于規則的技術來解決;二是將疑難問題同“開放結構”的法律概念聯系在一起,先用非范例知識如規則、控辯雙方的陳述、常識來獲得初步答案,再運用范例來澄清案件、檢查答案的正確性。

第四,目的法學促進了價值推理的人工智能研究。目的法學是指一種所謂直接實現目的之“后法治”理想。美國法學家諾內特和塞爾茲尼克把法律分為三種類型。他們認為,以法治為標志的自治型法,過分強調手段或程序的正當性,有把手段當作目的的傾向。這說明法治社會并沒有反映人類關于美好社會的最高理想,因為實質正義不是經過人們直接追求而實現的,而是通過追求形式正義而間接獲得的。因此他們提出以回應型法取代自治型法的主張。在回應型法中,“目的為評判既定的做法設立了標準,從而也就開辟了變化的途徑。同時,如果認真地對待目的,它們就能控制行政自由裁量權,從而減輕制度屈從的危險。反之,缺少目的既是僵硬的根源,又是機會主義的根源。”(注:(美)諾內特、塞爾茲尼克著:《轉變中的法律與社會》,張志銘譯,中國政法大學出版社1994年版,第60頁。)美國批判法學家昂格爾對形式主義法律推理和目的型法律推理的特點進行了比較,他認為,前者要求使用內容明確、固定的規則,無視社會現實生活中不同價值觀念的沖突,不能適應復雜情況和變化,追求形式正義;后者則要求放松對法律推理標準的嚴格限制,允許使用無固定內容的抽象標準,迫使人們在不同的價值觀念之間做出選擇,追求實質正義。與此相應,佩雷爾曼提出了新修辭學(NewRhetoric)的法律理論。他認為,形式邏輯只是根據演繹法或歸納法對問題加以說明或論證的技術,屬于手段的邏輯;新修辭學要填補形式邏輯的不足,是關于目的的辯證邏輯,可以幫助法官論證其決定和選擇,因而是進行價值判斷的邏輯。他認為,在司法三段論思想支配下,法學的任務是將全部法律系統化并作為闡釋法律的大前提,“明確性、一致性和完備性”就成為對法律的三個要求。而新修辭學的基本思想是價值判斷的多元論,法官必須在某種價值判斷的指示下履行義務,必須考慮哪些價值是“合理的、可接受的、社會上有效的公平的”。這些價值構成了判決的正當理由。(注:沈宗靈著:《現代西方法理學》,北京大學出版社1992年版,第443-446頁。)制造人工智能法律系統最終需要解決價值推理的模擬問題,否則,就難以實現為判決提供正當理由的要求。為此,P.Wahlgren提出的與人工智能相關的5種知識表達途徑中,明確地包括了以道義為基礎的法律推理模型。(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)引入道義邏輯,或者說在機器中采用基于某種道義邏輯的推理程序,強調目的價值,也許是制造智能法律系統的關鍵。不過,即使把道義邏輯硬塞給計算機,鋼鐵之軀的機器沒有生理需要,也很難產生價值觀念和主觀體驗,沒辦法解決主觀選擇的問題。在這個問題上,波斯納曾以法律家有七情六欲為由對法律家對法律的機械忠誠表示了強烈懷疑,并辯證地將其視為法律發展的動力之一。只有人才能夠平衡相互沖突的利益,能夠發現對人類生存和發展至關重要的價值。因此,關于價值推理的人工智能模擬究竟能取得什么成果,恐怕還是個未知數。

2.法理學對人工智能法律系統研制的理論指導作用

GoldandSusskind指出:“不爭的事實是,所有的專家系統必須適應一些法理學理論,因為一切法律專家系統都需要提出關于法律和法律推理性質的假設。從更嚴格的意義上說,一切專家系統都必須體現一種結構理論和法律的個性,一種法律規范理論,一種描述法律科學的理論,一種法律推理理論”。(注:GoldandSusskind,ExpertSystemsinLaw:AJurisprudentialandFormalSpecificationApproach,pp.307-309.)人工智能法律系統的研究,不僅需要以法理學關于法律的一般理論為知識基礎,還需要從法理學獲得關于法律推理的完整理論,如法律推理實踐和理論的發展歷史,法律推理的標準、主體、過程、方法等等。人工智能對法律推理的模擬,主要是對法理學關于法律推理的知識進行人工智能方法的描述,建立數學模型并編制計算機應用程序,從而在智能機器上再現人類法律推理功能的過程。在這個過程中,人工智能專家的主要任務是研究如何吸收法理學關于法律推理的研究成果,包括法理學關于人工智能法律系統的研究成果。

隨著人工智能法律系統研究從低級向高級目標的推進,人們越來越意識到,對法律推理的微觀機制認識不足已成為人工智能模擬的嚴重障礙。P.Wahlgren指出,“許多人工智能技術在法律領域的開發項目之所以失敗,就是因為許多潛在的法理學原則沒有在系統開發的開始階段被遵守或給予有效的注意。”“法理學對法律推理和方法論問題的關注已經有幾百年,而人工智能的誕生只是本世紀50年代中期的事情,這個事實是人工智能通過考察法理學知識來豐富自己的一個有效動機。”(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)因此,研究法律推理自動化的目標,“一方面是用人工智能(通過把計算機的應用與分析模型相結合)來支撐法律推理的可能性;另一方面是應用法理學理論來解決作為法律推理支撐系統的以及一般的人工智能問題。”(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)在前一方面,是人工智能法律系統充當法律推理研究的思想實驗手段以及輔助司法審判的問題。后一方面,則是法律推理的法律學研究成果直接為人工智能法律系統的研制所應用的問題。例如,20世紀70年代法理學在真實和假設案例的推理和分析方面所取得的成果,已為幾種人工智能法律裝置借鑒而成為其設計工作的理論基礎。在運用模糊或開放結構概念的法律推理研究方面,以及在法庭辯論和法律解釋的形式化等問題上,法理學的研究成果也已為人工智能法律系統的研究所借鑒。

四、人工智能法律系統研究的難點

人工智能法律系統的研究盡管在很短的時間內取得了許多令人振奮的成果,但它的發展也面臨著許多困難。這些困難構成了研究工作需要進一步努力奮斗的目標。

第一,關于法律解釋的模擬。在法理學的諸多研究成果中,法律解釋的研究對人工智能法律系統的研制起著關鍵作用。法律知識表達的核心問題是法律解釋。法律規范在一個法律論點上的效力,是由法律家按忠實原意和適合當時案件的原則通過法律解釋予以確認的,其中包含著人類特有的價值和目的考慮,反映了法律家的知識表達具有主觀能動性。所以,德沃金將解釋過程看作是一種結合了法律知識、時代信息和思維方法而形成的,能夠應變的思維策略。(注:Dworkin,TakingRightsSeriously,HarvardUniversityPressCambridge,Massachusetts1977.p.75.)目前的法律專家系統并未以知識表達為目的來解釋法律,而是將法律整齊地“碼放”在計算機記憶系統中僅供一般檢索之用。然而,在法律知識工程系統中,法律知識必須被解釋,以滿足自動推理對法律知識進行重新建構的需要。麥卡錫說:“在開發智能信息系統的過程中,最關鍵的任務既不是文件的重建也不是專家意見的重建,而是建立有關法律領域的概念模型。”(注:McCarty,Intelligentlegalinformationsystems:problemsandprospects,op.cit.supra,note25,p.126.)建立法律概念模型必須以法律家對某一法律概念的共識為基礎,但不同的法律家對同一法律概念往往有不同的解釋策略。凱爾森甚至說:即使在國內法領域也難以形成一個“能夠用來敘述一定法律共同體的實在法的基本概念”。(注:(奧)凱爾森著:《法與國家的一般理論》,沈宗靈譯,中國大百科全書出版社1996年版,第1頁。)盡管如此,法理學還是為法律概念模型的重建提供了一些方法。例如,德沃金認為,法官在“解釋”階段,要通過推理論證,為自己在“前解釋”階段所確定的大多數法官對模糊法律規范的“一致看法”提供“一些總的理由”。獲取這些總的理由的過程分為兩個步驟:首先,從現存的明確法律制度中抽象出一般的法律原則,用自我建立的一般法律理論來證明這種法律原則是其中的一部分,證明現存的明確法律制度是正當的。其次,再以法律原則為依據反向推出具體的法律結論,即用一般法律理論來證明某一法律原則存在的合理性,再用該法律原則來解釋某一法律概念。TAXMAN等系統裝置已吸收了這種方法,法律知識被計算機結構語言以語義網絡的方式組成不同的規則系統,解釋程序使計算機根據案件事實來執行某條法律規則,并在新案件事實輸入時對法律規則作出新的解釋后才加以調用。不過,法律知識表達的進展還依賴于法律解釋研究取得更多的突破。

第二,關于啟發式程序。目前的法律專家系統如果不能與啟發式程序接口,不能運用判斷性知識進行推理,只通過規則反饋來提供簡單解釋,就談不上真正的智能性。啟發式程序要解決智能機器如何模擬法律家推理的直覺性、經驗性以及推理結果的不確定性等問題,即人可以有效地處理錯誤的或不完全的數據,在必要時作出猜測和假設,從而使問題的解決具有靈活性。在這方面,Gardner的混合推理模型,EdwinaL.Rissland運用聯想程序對規則和判例推理的結果作集合處理的思路,以及Massachusetts大學研制的CABARET(基于判例的推理工具),在將啟發式程序應用于系統開發方面都進行了有益的嘗試。但是,法律問題往往沒有唯一正確的答案,這是人工智能模擬法律推理的一個難題。選擇哪一個答案,往往取決于法律推理的目的標準和推理主體的立場和價值觀念。但智能機器沒有自己的目的、利益和立場。這似乎從某種程度上劃定了機器法律推理所能解決問題的范圍。

第三,關于法律自然語言理解。在設計基于規則的程序時,設計者必須假定整套規則沒有意義不明和沖突,程序必須消滅這些問題而使規則呈現出更多的一致性。就是說,盡管人們對法律概念的含義可以爭論不休,但輸入機器的法律語言卻不能互相矛盾。機器語言具有很大的局限性,例如,LDS基于規則來模擬嚴格責任并計算實際損害時,表現出的最大弱點就是不能使用不精確的自然語言進行推理。然而,在實際的法律推理過程中,法律家對某個問題的任何一種回答都可根據上下文關系作多種解釋,而且辯論雙方總是尋求得出不同的結論。因此,智能法律專家系統的成功在很大程度上還依賴于自然語言理解研究工作的突破。牛津大學的一個程序組正在研究法律自然語言的理解問題,但是遇到了重重困難。原因是連法學家們自己目前也還沒有建立起一套大家一致同意的專業術語規范。所以EdwinaL.Rissland認為,常識知識、意圖和信仰類知識的模擬化,以及自然語言理解的模擬問題,迄今為止可能是人工智能面臨的最困難的任務。對于語言模擬來說,像交際短語和短語概括的有限能力可能會在較窄的語境條件下取得成果,完全的功能模擬、一般“解決問題”能力的模擬則距離非常遙遠,而像書面上訴意見的理解則是永遠的終極幻想。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)

五、人工智能法律系統的開發策略和應用前景

我們能夠制造出一臺什么樣的機器,可以證明它是人工智能法律系統?從檢驗標準上看,這主要是法律知識在機器中再現的判定問題。根據“圖靈試驗”原理,我們可將該檢驗標準概括如下:設兩間隔開的屋子,一間坐著一位法律家,另一間“坐著”一臺智能機器。一個人(也是法律家)向法律家和機器提出同樣的法律問題,如果提問者不能從二者的回答中區分出誰是法律家、誰是機器,就不能懷疑機器具有法律知識表達的能力。

依“圖靈試驗”制定的智能法律系統檢驗標準,所看重的是功能。只要機器和法律家解決同樣法律問題時所表現出來的功能相同,就不再苛求哪個是鋼鐵結構、哪個是血肉之軀。人工智能立足的基礎,就是相同的功能可以通過不同的結構來實現之功能模擬理論。

從功能模擬的觀點來確定人工智能法律系統的研究與開發策略,可作以下考慮:

第一,擴大人工智能法律系統的研發主體。現有人工法律系統的幼稚,暴露了僅僅依靠計算機和知識工程專家從事系統研發工作的局限性。因此,應該確立以法律家、邏輯學家和計算機專家三結合的研發群體。在系統研發初期,可組成由法學家、邏輯與認知專家、計算機和知識工程專家為主體的課題組,制定系統研發的整體戰略和分階段實施的研發規劃。在系統研發中期,應通過網絡等手段充分吸收初級產品用戶(律師、檢察官、法官)的意見,使研發工作在理論研究與實際應用之間形成反饋,將開發精英與廣大用戶的智慧結合起來,互相啟發、群策群力,推動系統迅速升級。

第二,確定研究與應用相結合、以應用為主導的研發策略。目前國外人工智能法律系統的研究大多停留在實驗室領域,還沒有在司法實踐中加以應用。但是,任何智能系統包括相對簡單的軟件系統,如果不經過用戶的長期使用和反饋,是永遠也不可能走向成熟的。從我國的實際情況看,如果不能將初期研究成果盡快地轉化為產品,我們也難以為后續研究工作提供雄厚的資金支持。因此,人工智能法律系統的研究必須走產研結合的道路,堅持以應用開路,使智能法律系統盡快走出實驗室,同時以研究為先導,促進不斷更新升級。

第三,系統研發目標與初級產品功能定位。人工智能法律系統的研發目標是制造出能夠滿足多用戶(律師、檢察官、法官、立法者、法學家)多種需要的機型。初級產品的定位應考慮到,人的推理功能特別是價值推理的功能遠遠超過機器,但人的記憶功能、檢索速度和準確性又遠不如機器。同時還應該考慮到,我國目前有12萬律師,23萬檢察官和21萬法官,每年1.2萬法學院本科畢業生,他們對法律知識的獲取、表達和應用能力參差不齊。因此,初級產品的標準可適當降低,先研制推理功能薄弱、檢索功能強大的法律專家系統。可與計算機廠商合作生產具有強大數據庫功能的硬件,并確保最新法律、法規、司法解釋和判例的網上及時更新;同時編制以案件為引導的高速檢索軟件。系統開發的先期目標應確定為:(1)替律師起草僅供參考的起訴書和辯護詞;(2)替法官起草僅供參考的判決書;(3)為法學院學生提供模擬法庭審判的通用系統軟件,以輔助學生在起訴、辯護和審判等訴訟的不同階段鞏固所學知識、獲得審判經驗。上述軟件旨在提供一個初級平臺,先解決有無和急需,再不斷收集用戶反饋意見,逐步改進完善。

第四,實驗室研發應確定較高的起點或跟蹤戰略。國外以知識工程為主要技術手段的人工智能法律系統開發已經歷了如下發展階段:(1)主要適用于簡單案件的規則推理;(2)運用開放結構概念的推理;(3)運用判例和假設的推理;(4)運用規則和判例的混合推理。我們如確定以簡單案件的規則推理為初級市場產品,那么,實驗室中第二代產品開發就應瞄準運用開放結構概念的推理。同時,跟蹤運用假設的推理及混合推理,吸收國外先進的KBS和HYPO的設計思想,將功能子系統開發與聯想式控制系統結合。HYPO判例法推理智能裝置具有如下功能:(1)評價相關判例;(2)判定何方使用判例更加貼切;(3)分析并區分判例;(4)建立假設并用假設來推理;(5)為一種主張引用各種類型的反例;(6)建立判例的引證概要。HYPO以商業秘密法的判例推理為模擬對象,假設了完全自動化的法律推理過程中全部要素被建立起來的途徑。值得注意的是,HYPO忽略了許多要素的存在,如商業秘密法背后的政策考慮,法律概念應用于實際情況時固有的模糊性,信息是否已被公開,被告是否使用了對方設計的產品,是否簽署了讓與協議,等等。一個系統設計的要素列表無論多長,好律師也總能再多想出一些。同樣,律師對案件的分析,不可能僅限于商業秘密法判例,還可能援引侵權法或專利法的判例,這決定了起訴緣由的多種可能性。Ashley還討論了判例法推理模擬的其他困難:判例并不是概念的肯定的或否定的樣本,因此,要通過要素等簡單的法律術語使模糊的法律規則得到澄清十分困難,法律原則和類推推理之間的關系還不能以令人滿意的方式加以描述。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)這說明,即使具有較高起點的實驗室基礎研究,也不宜確定過高的目標。因為,智能法律系統的研究不能脫離人工智能的整體發展水平。

第五,人-機系統解決方案。人和機器在解決法律問題時各有所長。人的優點是能作價值推理,使法律問題的解決適應社會的變化發展,從而具有靈活性。機器的長處是記憶和檢索功能強,可以使法律問題的解決具有一貫性。人-機系統解決方案立足于人與機器的功能互補,目的是解放人的腦力勞動,服務于國家的法治建設。該方案的實施可以分為兩個階段:第一階段以人為主,機器為人收集信息并作初步分析,提供決策參考。律師受理案件后,可以先用機器處理大批數據,并參考機器的起訴和辯護方案,再做更加高級的推理論證工作。法官接觸一個新案件,或新法官剛接觸審判工作,也可以先看看“機器法官”的判決建議或者審判思路,作為參考。法院的監督部門可參照機器法官的判決,對法官的審判活動進行某種監督,如二者的判決結果差別太大,可以審查一下法官的判決理由。這也許可以在一定程度上制約司法腐敗。在人-機系統開發的第二階段,會有越來越多的簡單案件的判決與電腦推理結果完全相同,因此,某些簡單案件可以機器為主進行審判,例如,美國小額法庭的一些案件,我國法庭可用簡易程序來審理的一些案件。法官可以作為“產品檢驗員”監督和修訂機器的判決結果。這樣,法官的判案效率將大大提高,法官隊伍也可借此“消腫”,有可能大幅度提高法官薪水,吸引高素質法律人才進入法官隊伍。

未來的計算機不會完全取代律師和法官,然而,律師和法官與智能機器統一體的出現則可能具有無限光明的前景。(注:Smith,J.C,MachineIntelligenceandLegalReasoning,Chicago-KentLawReview,1998,Vol.73,No.1,p277.)可以預見,人工智能將為法律工作的自動化提供越來越強有力的外腦支持。電腦律師或法官將在網絡所及的范圍內承擔起諸如收債、稅務、小額犯罪訴訟等職能。自動法律推理系統將對訴訟活動發揮越來越多的輔助作用,例如,通過嚴密的演繹邏輯使用戶確信全部法律結論得出的正當性;在解決相互沖突的規則、判例和政策問題時提示可能出現的判決預測;等等。正如網絡的出現打破了少數人對信息的壟斷一樣,電腦法律顧問的問世,將打破法官、律師對法律知識的壟斷,極大地推動法律知識的普及,迅速提高廣大人民群眾的法律素質,使法律真正變為群眾手中的銳利武器。

人工智能要用“人工的、模擬的、假的”智能來代替人類自然的、原型的、真的智能,而且要達到以假亂真的目的。愈是真假難辨,愈能顯示人的智慧,解放人的腦力勞動,在更深的層次和更廣的范圍提高人類改造自然和改造自身的能力。從這個意義上說,人工智能的發展沒有界限。人工智能的模擬實驗與法理學的學術研究,在推動人工智能法律系統的進化方面是互相補充的。因此,人工智能法律系統的前景,一方面取決于智能模擬技術的發展,另一方面也取決于法理學對法律推理研究的深化。從信心方面說,“不容質疑的是,能夠執行復雜計劃和法律推理的計算機系統肯定是未來幾十年法律實踐的一場革命。”(注:GarryS,GrossmanandLewisD.Solomon,ComputersandLegalReasoning,AmericanBarAssociationJournal,V69Jan,1983.pp.66-70.)

本文關鍵詞:人工智能法律系統法律法理學