數控機床論文范文
時間:2023-03-30 07:21:53
導語:如何才能寫好一篇數控機床論文,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。
篇1
對于數控機床來說,合理的日常維護措施,可以有效的預防和降低數控機床的故障發生幾率。
首先,針對每一臺機床的具體性能和加工對象制定操作規程建立工作、故障、維修檔案是很重要的。包括保養內容以及功能器件和元件的保養周期。
其次,在一般的工作車間的空氣中都含有油霧、灰塵甚至金屬粉末之類的污染物,一旦他們落在數控系統內的印制線路或電子器件上,很容易引起元器件之間絕緣電阻下降,甚至倒是元器件及印制線路受到損壞。所以除非是需要進行必要的調整及維修,一般情況下不允許隨便開啟柜門,更不允許在使用過程中敞開柜門。
另外,對數控系統的電網電壓要實行時時監控,一旦發現超出正常的工作電壓,就會造成系統不能正常工作,甚至會引起數控系統內部電子部件的損壞。所以配電系統在設備不具備自動檢測保護的情況下要有專人負責監視,以及盡量的改善配電系統的穩定作業。
當然很重要的一點是數控機床采用直流進給伺服驅動和直流主軸伺服驅動的,要注意將電刷從直流電動機中取出來,以免由于化學腐蝕作用,是換向器表面腐蝕,造成換向性能受損,致使整臺電動機損壞。這是非常嚴重也容易引起的故障。
2.數控機床一般的故障診斷分析
2.1檢查
在設備無法正常工作的情況下,首先要判斷故障出現的具置和產生的原因,我們可以目測故障板,仔細檢查有無由于電流過大造成的保險絲熔斷,元器件的燒焦煙熏,有無雜物斷路現象,造成板子的過流、過壓、短路。觀察阻容、半導體器件的管腳有無斷腳、虛焊等,以此可發現一些較為明顯的故障,縮小檢修范圍,判斷故障產生的原因。
2.2系統自診斷
數控系統的自診斷功能隨時監視數控系統的工作狀態。一旦發生異常情況,立即在CRT上顯示報警信息或用發光二級管指示故障的大致起因,這是維修中最有效的一種方法。近年來隨著技術的發展,興起了新的接口診斷技術,JTAG邊界掃描,該規范提供了有效地檢測引線間隔致密的電路板上零件的能力,進一步完善了系統的自我診斷能力。
2.3功能程序測試法
功能程序測試法就是將數控系統的常用功能和特殊功能用手工編程或自動變成的方法,編制成一個功能測試程序,送人數控系統,然后讓數控系統運行這個測試程序,借以檢查機床執行這些功能的準確定和可靠性,進而判斷出故障發生的可能原因。
2.4接口信號檢查
通過用可編程序控制器在線檢查機床控制系統的接回信號,并與接口手冊正確信號相對比,也可以查出相應的故障點。
2.5診斷備件替換法
隨著現代技術的發展,電路的集成規模越來越大技術也越來越復雜,按常規方法,很難把故障定位到一個很小的區域,而一旦系統發生故障,為了縮短停機時間,在沒有診斷備件的情況下可以采用相同或相容的模塊對故障模塊進行替換檢查,對于現代數控的維修,越來越多的情況采用這種方法進行診斷,然后用備件替換損壞模塊,使系統正常工作,盡最大可能縮短故障停機時間。
上述診斷方法,在實際應用時并無嚴格的界限,可能用一種方法就能排除故障,也可能需要多種方法同時進行。最主要的是根據診斷的結果間接或直接的找到問題的關鍵,或維修或替換盡快的恢復生產。3數控機床故障診斷實例
由于數控機床的驅動部分是強弱電一體的,是最容易發生問題的。因此將驅動部分作簡單介紹:驅動部分包括主軸驅動器和伺服驅動器,有電源模塊和驅動模塊兩部分組成,電源模塊是將三相交流電有變壓器升壓為高壓直流,而驅動部分實際上是個逆變換,將高壓支流轉換為三相交流,并驅動伺服電機,完成個伺服軸的運動和主軸的運轉。因此這部分最容易出故障。以CJK6136數控機床和802S數控系統的故障現象為例,主要分析一下控制電路與機械傳動接口的故障維修。
如在數控機床在加工過程中,主軸有時能回參考點有時不能。在數控操作面板上,主軸轉速顯示時有時無,主軸運轉正常。分析出現的故障原因得該機床采用變頻調速,其轉速信號是有編碼器提供,所以可排除編碼器損壞的可能,否則根本就無法傳遞轉速信號了。只能是編碼器與其連接單元出現問題。兩方面考慮,一是可能和數控系統連接的ECU連接松動,二是可能可和主軸的機械連接出現問題。由此可以著手解決問題了。首先檢查編碼器與ECU的連接。若不存在問題,就卸下編碼器檢查主傳動與編碼器的連接鍵是否脫離鍵槽,結果發現就是這個問題。修復并重新安裝就解決了問題。
數控機床故障產生的原因是多種多樣的,有機械問題、數控系統的問題、傳感元件的問題、驅動元件的問題、強電部分的問題、線路連接的問題等。在檢修過程中,要分析故障產生的可能原因和范圍,然后逐步排除,直到找出故障點,切勿盲目的亂動,否則,不但不能解決問題。還可能使故障范圍進一步擴大。總之,在面對數控機床故障和維修問題時,首先要防患于未燃,不能在數控機床出現問題后才去解決問題,要做好日常的維護工作和了解機床本身的結構和工作原理,這樣才能做到有的放矢。
參考文獻
[1]陳蕾、談峰,淺析數控機床維護維修的一般方法[J],機修用造,2004(10)
[2]邱先念,數控機床故障診斷及維修[J],設備管理與維修,2003(01)
[3]王超,數控機床的電器故障診斷及維修[J],蕪湖職業技術學院學報,2003(02)
[4]王剛,數控機床維修幾例[J],機械工人冷加工,2005(03)
[5]李宏慧、謝小正、沙成梅,淺談數控機床故障排除的一般方法[J],甘肅科技,2004(09)
[6]萬宏強、姚敏茹,基于網絡的數控機床設備遠程故障診斷技術的框架研究[J],精密制造與自動化,2004(04)
篇2
論文摘要:本人于2007年4月份進入廣東省廣州昊達機電有限公司進行畢業前的綜合實踐,從事有關變頻器的工作。本文介紹了采用數控車床的主軸驅動中變頻控制的系統結構與運行模式,并簡述了無速度傳感器的矢量變頻器的基本應用。
前言
數控車床是機電一體化的典型產品,是集機床、計算機、電機及其拖動、自動控制、檢測等技術為一身的自動化設備。其中主軸運動是數控車床的一個重要內容,以完成切削任務,其動力約占整臺車床的動力的70%~80%。基本控制是主軸的正、反轉和停止,可自動換檔和無級調速。
在目前數控車床中,主軸控制裝置通常是采用交流變頻器來控制交流主軸電動機。為滿足數控車床對主軸驅動的要求,必須有以下性能:(1)寬調速范圍,且速度穩定性能要高;(2)在斷續負載下,電機的轉速波動要小;(3)加減速時間短;(4)過載能力強;(5)噪聲低、震動小、壽命長。
本文介紹了采用數控車床的主軸驅動中變頻控制的系統結構與運行模式,并闡述了無速度傳感器的矢量變頻器的基本應用。
第1章變頻器矢量控制闡述
70年代西門子工程師F.Blaschke首先提出異步電機矢量控制理論來解決交流電機轉矩控制問題。矢量控制實現的基本原理是通過測量和控制異步電動機定子電流矢量,根據磁場定向原理分別對異步電動機的勵磁電流和轉矩電流進行控制,從而達到控制異步電動機轉矩的目的。具體是將異步電動機的定子電流矢量分解為產生磁場的電流分量(勵磁電流)和產生轉矩的電流分量(轉矩電流)分別加以控制,并同時控制兩分量間的幅值和相位,即控制定子電流矢量,所以稱這種控制方式稱為矢量控制方式。矢量控制方式又有基于轉差頻率控制的矢量控制方式、無速度傳感器矢量控制方式和有速度傳感器的矢量控制方式等。這樣就可以將一臺三相異步電機等效為直流電機來控制,因而獲得與直流調速系統同樣的靜、動態性能。矢量控制算法已被廣泛地應用在siemens,AB,GE,Fuji等國際化大公司變頻器上。
采用矢量控制方式的通用變頻器不僅可在調速范圍上與直流電動機相匹配,而且可以控制異步電動機產生的轉矩。由于矢量控制方式所依據的是準確的被控異步電動機的參數,有的通用變頻器在使用時需要準確地輸入異步電動機的參數,有的通用變頻器需要使用速度傳感器和編碼器。目前新型矢量控制通用變頻器中已經具備異步電動機參數自動檢測、自動辨識、自適應功能,帶有這種功能的通用變頻器在驅動異步電動機進行正常運轉之前可以自動地對異步電動機的參數進行辨識,并根據辨識結果調整控制算法中的有關參數,從而對普通的異步電動機進行有效的矢量控制。
第2章數控車床主軸變頻的系統結構與運行模式
2.1主軸變頻控制的基本原理
由異步電機理論可知,主軸電機的轉速公式為:
n=(60f/p)×(1-s)
其中P—電動機的極對數,s—轉差率,f—供電電源的頻率,n—電動機的轉速。從上式可看出,電機轉速與頻率近似成正比,改變頻率即可以平滑地調節電機轉速,而對于變頻器而言,其頻率的調節范圍是很寬的,可在0~400Hz(甚至更高頻率)之間任意調節,因此主軸電機轉速即可以在較寬的范圍內調節。
當然,轉速提高后,還應考慮到對其軸承及繞組的影響,防止電機過分磨損及過熱,一般可以通過設定最高頻率來進行限定。
圖2-1所示為變頻器在數控車床的應用,其中變頻器與數控裝置的聯系通常包括:(1)數控裝置到變頻器的正反轉信號;(2)數控裝置到變頻器的速度或頻率信號;(3)變頻器到數控裝置的故障等狀態信號。因此所有關于對變頻器的操作和反饋均可在數控面板進行編程和顯示。
2.2主軸變頻控制的系統構成
不使用變頻器進行變速傳動的數控車床一般用時間控制器確認電機轉速到達指令速度開始進刀,而使用變頻器后,機床可按指令信號進刀,這樣一來就提高了效率。如果被加工件如圖2-2所示所示形狀,則由圖2-2中看出,對應于工件的AB段,主軸速度維持在1000rpm,對應于BC段,電機拖動主軸成恒線速度移動,但轉速卻是聯系變化的,從而實現高精度切削。
在本系統中,速度信號的傳遞是通過數控裝置到變頻器的模擬給定通道(電壓或電流),通過變頻器內部關于輸入信號與設定頻率的輸入輸出特性曲線的設置,數控裝置就可以方便而自由地控制主軸的速度。該特性曲線必須涵蓋電壓/電流信號、正/反作用、單/雙極性的不同配置,以滿足數控車床快速正反轉、自由調速、變速切削的要求。第3章無速度傳感器的矢量控制變頻器
3.1主軸變頻器的基本選型
目前較為簡單的一類變頻器是V/F控制(簡稱標量控制),它就是一種電壓發生模式裝置,對調頻過程中的電壓進行給定變化模式調節,常見的有線性V/F控制(用于恒轉矩)和平方V/F控制(用于風機水泵變轉矩)。
標量控制的弱點在于低頻轉矩不夠(需要轉矩提升)、速度穩定性不好(調速范圍1:10),因此在車床主軸變頻使用過程中被逐步淘汰,而矢量控制的變頻器正逐步進行推廣。
所謂矢量控制,最通俗的講,為使鼠籠式異步機像直流電機那樣具有優秀的運行性能及很高的控制性能,通過控制變頻器輸出電流的大小、頻率及其相位,用以維持電機內部的磁通為設定值,產生所需要的轉矩。
矢量控制相對于標量控制而言,其優點有:(1)控制特性非常優良,可以直流電機的電樞電流加勵磁電流調節相媲美;(2)能適應要求高速響應的場合;(3)調速范圍大(1:100);(4)可進行轉矩控制。
當然相對于標量控制而言,矢量控制的結構復雜、計算煩瑣,而且必須存貯和頻繁地使用電動機的參數。矢量控制分無速度傳感器和有速度傳感器兩種方式,區別在于后者具有更高的速度控制精度(萬分之五),而前者為千分之五,但是在數控車床中無速度傳感器的矢量變頻器的控制性能已經符合控制要求,所以這里推薦并介紹無速度傳感器的矢量變頻器。
3.2無速度傳感器的矢量變頻器
無速度傳感器的矢量變頻器目前包括西門子、艾默生、東芝、日立、LG、森蘭等廠家都有成熟的產品推出,總結各自產品的特點,它們都具有以下特點:(1)電機參數自動辯識和手動輸入相結合;(2)過載能力強,如50%額定輸出電流2min、180%額定輸出電流10s;(3)低頻高輸出轉矩,如150%額定轉矩/1HZ;(4)各種保護齊全(通俗地講,就是不容易炸模塊)。
無速度傳感器的矢量控制變頻器不僅改善了轉矩控制的特性,而且改善了針對各種負載變化產生的不特定環境下的速度可控性。圖3-1所示,為某品牌無速度傳感器變頻器產品在低頻和正常頻段時的轉矩測試數據(電機為5.5kW/4極)。從圖中可知,其在低速范圍時同樣可以產生強大的轉矩。在實驗中,我們同樣將2Hz的矢量變頻控制和V/F控制變頻進行比較發現,前者具有更強的輸出力矩,切削力幾乎與正常頻段(如30Hz或50Hz)相同。3.3矢量控制中的電機參數辨識
由于矢量控制是著眼于轉子磁通來控制電機的定子電流,因此在其內部的算法中大量涉及到電機參數。從圖3-2的異步電動機的T型等效電路表示中可以看出,電機除了常規的參數如電機極數、額定功率、額定電流外,還有R1(定子電阻)、X11(定子漏感抗)、R2(轉子電阻)、X21(轉子漏感抗)、Xm(互感抗)和I0(空載電流)。
參數辨識中分電機靜止辨識和旋轉辨識2種,其中在靜止辨識中,變頻器能自動測量并計算頂子和轉子電阻以及相對于基本頻率的漏感抗,并同時將測量的參數寫入;在旋轉辨識中,變頻器自動測量電機的互感抗和空載電流。
在參數辨識中,必須注意:(1)若旋轉辨識中出現過流或過壓故障,可適當增減加減速時間;(2)旋轉辨識只能在空載中進行;(3)如辨識前必須首先正確輸入電機銘牌的參數。
3.4數控車床主軸變頻矢量控制的功能設置
從圖1-1中可以看出,使用在主軸中變頻器的功能設置分以下幾部分:
1矢量控制方式的設定和電機參數;
2開關量數字輸入和輸出;
3模擬量輸入特性曲線;
4SR速度閉環參數設定。
第4章結束語
對于數控車床的主軸電機,使用了無速度傳感器的變頻調速器的矢量控制后,具有以下顯著優點:大幅度降低維護費用,甚至是免維護的;可實現高效率的切割和較高的加工精度;實現低速和高速情況下強勁的力矩輸出。
參考文獻
1.王侃夫.數控機床控制技術與系統[M].北京:機械工業出版社,2002.
2.杜金城.電氣變頻調速設計技術[M].北京:中國電力出版社,2001.
篇3
常見故障按產生原因分為機械故障和電氣故障兩類。所以,維修中首先要判斷是機械故障還是電氣故障,先檢查電氣系統看程序能否正常運行,功能鍵是否正常,有無報警現象等,再檢查是否有缺相、過流、欠壓或運動異常等現象。根據上述情況,則可初步判斷故障原因在機械方面還是在電氣方面。
2典型故障的診斷與排除方法
2.1常規檢查法①報警處理:數控系統發生故障時,一般在操作面板上給出故障信號和相應的信息。通常系統的操作手冊或調整手冊中都有詳細的報警內容和處理方法。同時可以利用操作面板或編程器根據電路圖和PLC程序,查出相應的信號狀態,按邏輯關系找出故障點進行處理。②無報警或無法報警的故障處理:當系統無法運行,停機或系統沒有報警但工作不正常時,需要根據故障發生前后的系統狀態信息,運用已掌握的理論基礎,進行分析,做出正確的判斷。這種利用可編程控制器進行PLC中斷狀態分析,其中斷原因以中斷堆棧的方式記憶。
例如:一臺SCHIESSVMG67軸五連動數控機床,采用西門子840D系統其可編程控制器S7300在運行中產生中斷故障,利用系統診斷中斷堆棧的方法可以十分迅速的找到故障原因,通過SIMATICManager訪問這一功能,選擇菜單功能PLC->Diagnostic/setting->ModuleInformation->DiagnosticBuffer,可打開診斷緩沖器,診斷緩沖器中按先后順序存儲著所有可用于系統診斷的事件。選中了一個事件后,在“DtailsonEvent"信息框中可以看到關于該事件的詳細說明:事件(ID)代號和事件號、塊類型和號碼,根據事件,如導致該事件的指令的相對STL行地址。單擊〖HelponEvent〗按鈕,可打開事件幫助信息窗口。單擊〖OpenBlock〗按鈕,可在線打開CPU中出現中斷的塊,如利用這種方法在實際維修工作中是十分迅速有效的。維修人員應當充分熟悉系統的自診斷功能的一些特殊處理方法。這樣就會少走彎路,較快排除故障。
2.2初始化法一般情況下,由于瞬時故障引起的系統報警,可用硬件復位或開關系統電源依次清除故障;若系統工作存貯區由于掉電、拔插線路板或電池欠壓造成混亂,則必須對系統進行初始化清除。
例如:一臺德國PFH100KW-6米數控龍門銑鏜床采用西門子840C數控系統,由于系統工作存貯區混亂,開關后只定在一個初始化界面,系統根本無法進入,一般性復位無效,必須對系統進行初始化清除,就采用了初始化復位法,進入〖startup〗菜單->利用〖generalresetmodeinformationonstartup〗->選擇〖endgenresetmode〗進行這種特殊的復位法之后,系統才能重啟進行正常操作,故障解除。
2.3參數修正法在數控機床維修中,有時要利用某些參數來調整機床,有些參數要根據機床的運行狀態進行必要的修正,這種方法與機械維修相配合是十分有效的。例如:一臺法國Forestφ250數控落地鏜采用NUM1060系統爬行嚴重,雖進行了X軸導軌的大修但此方向立柱的運行仍無法滿足加工要求,原因是前導軌已經嚴重研傷,在機械調節能力有限的基礎上試著進行參數更改,將P21Servo-systemloopgaincoefficient伺服系統的位置環增益系數逐漸修調,NUM機床參數的設置步驟及操作方法介紹如下:①上電后按軟鍵Fll-SELECTTHEUTILITY②選擇0項ACCESSTOUTILITYPROGRAMMES③選擇第5項SETUPDATA④這時出現畫面WARNINGMACHINECONTROLWILLBESTOPPEDWHENCHANGINGPARAMETESOK?(Y/N),鍵人Y字母⑤出現畫面MACHINESETUPDATA0DISPLAY1CHANGE……,如果更改請鍵入1⑥出現PARAMETER?如果更改參數P21則鍵入P21⑦出現該參數后將光標移到字按#鍵入參數值回車即可⑧按鍵CTRL+XOff系統復位退出參數設定即可
經多次調試P21數值由950最終降為700后機床爬行故障得到好轉,保證了生產的進行。所以維修人員要多查資料多了解機床各種參數的意義及參數更改的方法。這樣就可以在機械調節能力一定的基礎上通過修改NC數據使機床的性能得到更好更大的發揮,提高它的加工精度。
3數控機床電氣、液壓和冷卻系統的保養
3.1電氣系統的保養
3.1.1清除電氣柜內的積灰,保持電路板、電氣元件表面干凈。由于環境溫度過高,數控柜內一般都要加裝空調裝置。安裝空調后,數控系統的可靠性有明顯的提高。
3.1.2機床周圍電器檢查機床各部件之間連接導線、電纜不得被腐蝕與破損,發現隱患后及時處理,以防止短路、斷路。緊固好接線端子和電器元件上的壓線螺釘,使接線頭牢固可靠。
3.1.3機床電源檢查數控系統供電是否正常,電壓波動是否在允許范圍之內,整個數控電氣系統接地是否良好可靠。接地可靠是系統防止干擾、工作可靠的保證。
例如:一臺美國AB的10×40米數控車銑床在調試過程中發現,機床通訊經常突然中斷很異常,通過檢查發現電控框屏蔽層接地不好,使程序信號受干擾引起失真,是導致上述問題的原因,將電纜屏蔽層、機床配電柜元器件良好接地后故障排除。
3.2液壓系統的保養要定期對油箱內的油液進行更換,且有時機床油號的選擇也要由工作現場的環境溫度,油路系統不同而定。定期檢查更換密封件,清洗油箱和管路,防止液壓系統泄漏。檢查系統的噪聲、振動、壓力、溫度等是否正常,將故障排除在萌芽狀態。
3.3冷卻系統保養檢查導軌油箱的油量,油泵是否能定時啟動、停止。定期檢查油泵、清洗過濾器、油箱、更換油。如切削液太臟,應清洗切削液箱、更換切削液。在使用過程中,因此,要求除了掌握數控機床的性能及精心操作外,還要注意消除各種不利的影響因素。
應該強調的是,雖然數控機床的系統種類繁多,但是各類數控機床的保養方法基本相同。只要操作者與維修人員做到認真操作,精心維護,就可以及時發現和消除隱患,減少維修費用,從而保證了數控機床更長時間安全可靠的運行,切實貫徹了設備管理以防為主的主導思想,從而有效的保證和提高了企業的經濟效益。
參考文獻:
[1]劉永久.數控機床故障診斷與維修技術.北京:機械工業出版社.2006.
[2]管士昌.數控機床維修保養中的幾個問題.設備管理與維修1990(2).
[3]崔洪才.淺談數控機床的維護.設備管理與維修2001.No9.
篇4
太浦河泵站的設計凈揚程為1.39m,單泵流量50m3/s,裝有6臺斜150軸伸泵,葉輪直徑4.1m,是國內最大的斜軸伸式水泵。由于該水泵的揚程特低、流量很大,要求水泵裝置具有很高的水力效率和良好的汽蝕性能。葉片是水泵的最重要部件,它直接影響和決定水泵的能量指標、汽蝕性能、水壓脈動和泵組的運行振動。通過國際招標,水泵由無錫水泵廠制造。該廠采用數控機床對葉片進行加工,以保證原型水泵與模型水泵有很好的水力相似,葉片各方面的技術指標可以達到或超過招標文件規定的各項技術要求。
2水泵葉片技術要求
2.1葉片材料
水泵葉片材料采用ZG0Cr13Ni4Mo。其化學成分見表1,物理指標見表2。
表1ZG0Cr13Ni4Mo材料化學成分
化學成分
C
Si
Mn
S
Cr
Ni
Mo
含量(%)
≤0.06
≤1.00
≤1.00
≤0.030
5~14.0
3.50~4.50
0.40~1.00
表2ZG0Cr13Ni4Mo材料物理指標
物理指標
σb
σs
δ
ψ
HB
數值
760Mpa
550MPa
15%
35%
≥240
該材料的特性是抗汽蝕性能好,可焊性好,硬度較高,耐磨損,在水輪機和水泵制造中較常使用。
2.2葉片加工技術要求
太浦河水泵的設備招標文件編制時,兼顧了葉片常規加工和數控機床加工的兩種要求。招標文件規定:葉片型線允許偏差不超過±0.15%D(D為葉輪直徑m),葉片厚度的允許偏差為-3%T~+6%T(T為葉片厚度)。葉片正背面的波浪度應低于2/100,在進水口等容易產生汽蝕的部位葉片波浪度應小于1/100。葉輪葉片安放角最大偏差不大于±15/。葉片表面粗糙度不得大于6.3μm。
3葉片加工方式
軸流式水泵的葉片加工一般采用兩種方式:一種是葉片表面手工打磨的常規加工方式,另一種是數控機床加工方式。
3.1常規加工方式
常規加工方式工藝較簡單,費用低,軸流式水泵葉片基本采用常規加工。其主要工藝過程如下:
a:葉片固溶處理(不銹鋼)
b:葉片表面隨形磨、打磨
c:按葉片坐標,三坐標工具檢測坐標、劃中心孔位置線及零度位置線
d:鉆兩端中心孔
e:粗加工葉片柄部
f:探傷檢查
g:精加工葉片柄部
h:鉆定位孔或銑鍵槽
I:葉片稱重分組和轉子體裝配
j:加工葉片外球形
k:校靜平衡
常規加工的葉片表面有兩種處理方式。對小型水泵,葉片鑄造時表面不留加工余量,葉片精度主要由木模和鑄造精度來保證,變形量比較大,葉片表面極個別處(約1~2處)最大變形可達到5~6-12mm(根據葉片大小和葉型厚度)。對大型或重要的水泵,葉片鑄造時表面留3~4mm加工余量,在探傷檢查后,葉片表面多次采用坐標檢測和打點,對其用砂輪進行手工表面打磨,重新劃葉片零度線,以達到設計要求。葉片表面的精度主要由操作工及測量手段保證,一般能達到1.5mm,有一定的誤差。該方法采用坐標投影測量(游標精度0.02mm、實測經濟精度≤0.5mm)。
3.2數控機床加工
葉片采用數控機床加工是一種最先進的加工方式,雖然它的加工費用較高,但對于大型水泵河特殊要求的水泵,可以保證原型葉片的型線、表面粗糙度和精度、各葉片重量具有很高的一致性。數控機床加工主要工藝過程如下:
a:葉片固溶處理(不銹鋼)
b:葉片表面隨形磨、打磨
c:按葉片坐標,坐標投影檢測坐標、劃中心孔位置線及零度位置線
d:鉆兩端中心孔
e:粗加工葉片柄部
f:葉片坐標檢測、記錄、重新劃葉片零度線
g:探傷檢查
h:精加工葉片柄部
I:鉆定位孔或銑鍵槽
j:葉片坐標檢測、記錄
k:葉片表面數控加工
l:葉片稱重分組和轉子體裝配
m:加工葉片外球形
n:校靜平衡
與常規葉片加工方式相比,數控機床加工方式增加了葉片表面坐標檢測和數控加工的工藝流程。
數控機床有三軸、四軸、五軸幾種形式。三軸數控機床僅有X、Y、Z三個坐標,銑刀位置不調整,宜加工一般要求的工件。四軸和五軸數控機床除有X、Y、Z三個坐標外,還有刀頭旋轉的坐標,可以調整加工誤差,工件加工精度很高。數控機床在加工方法上又有2.5軸、三軸聯動、四軸聯動、五軸聯動的不同加工。運轉速度上又可分為傳統的低速銑床和現代的高速銑床。數控機床配置有CAD/CAM/CAE軟件,可以按設計的曲面型線,仿型加工。數控加工采用不同的加工方式和加工工藝,其達到的精度、效果也不相同。
3.3兩種加工方式比較
雖然傳統的低速銑床也可加工葉片的曲面,但難以控制葉片的型線,尤其在葉片比較薄的地方,傳統的低速銑床在切削力的作用下,產生振動和彈性退讓,降低了加工精度。一般傳統三軸銑床加工表面粗糙較差和存在著加工死角,通常在工藝上還要進行大量的表面打磨。數控機床將葉片型線輸入控制箱內,可以隨意控制和調整銑刀的加工,用直線、圓弧命令逼近零件,控制刀位軌跡使葉片表面的實際曲線與設計的曲線完全一致,精加工后的葉片表面不用打磨,便達到設計要求。
數控機床加工的葉片型線和精度,根據編制的設計程序控制加工,可以不再對葉片表面進行檢測。數控機床的精度由有關部門按規定期限定期進行檢驗,所以它的可靠性和精度遠高于常規葉片加工后的檢測方式。
4太浦河水泵葉片加工
太浦河泵站斜150軸伸泵葉輪直徑4.1米,每個葉輪有三個葉片,每個葉片重~1.95t,共18個葉片。為保證水泵葉片的加工質量,無錫水泵廠選擇了富春江水工機械廠的五軸聯動數控機床,它的加工效果非常好。
數控機床加工的太浦河水泵葉片,葉片加工精度實測數值:
葉片正面波浪度0.4~0.8/100,集中區域0.5~0.8/100,并均勻分布。
葉片背面波浪度0.4~1.2/100,其中≤1/100的區域占總面積的87.7%。
葉片表面粗糙度1.6~5.3μm,集中分布區域2.6~3.8μm。
實測2502個點坐標,其坐標誤差-3~+4mm,絕對值≤3mm的占90.67%。
按要求每個葉片重量誤差≤39kg。實測18個葉片,重量誤差0~35kg,其中≤25kg的占88.89%,≤10kg的占50%。
坐標誤差即為葉片允許誤差,葉輪直徑4.1m,允許誤差為±6.15mm。
5數控機床加工的經濟性
數控機床的價格比較貴,所以加工的費用比常規加工的要高。加工費用由機床折舊費、日常維護費、操作人員和管理人員費、加工中的正常損耗如刀具、電、氣、冷卻液等費用構成。最簡單的計算方法是單位工時價格×工時數。工時包括軟件計算工時和裝夾、換刀等工時。確定數控加工的方法非常豐富,從2.5軸至5軸聯動,速度從低速至高速、工藝變化很多,刀位軌跡變化多,為有良好的經濟性,應根據不同加工件的產品質量要求,選定最優數控加工程序和經濟的加工方法。
比如,加工余量的確定是為了保證葉片能加工出來,應根據葉片大小、厚度,選擇合適的葉片單面加工余量,太浦河水泵葉片的尺寸可放5~13mm余量;葉片根部、進出口邊圓角等處可考慮以磨代銑降低費用。為了經濟、高效又高精度的加工葉片,加工精度可通過人機交互設定。粗加工時三軸聯動重切削加工去除大量表面余量,精加工時采用五軸聯動高速加工,消除加工死角及薄壁處的振動和彈性退讓,表面加工后不用打磨。在運行軟件上可以首先用CAD三維設計、造型葉片,修改葉片表面缺陷,對表面光滑處理。然后用CAM靈活設計加工方法、確定加工參數、刀具等,進行刀軌的校核、編輯、優化、模擬仿真以獲得最佳加工刀位軌跡,通過后處理程序生成加工程序。
太浦河水泵的葉輪直徑4.1m,每個葉片重1.95t,由于委托外廠數控機床加工,每個葉片費用近8萬元。0Cr13Ni4Mo的材料比較硬,如葉片鑄造余量留得比較大,將增加數控機床的加工量和加工工時數。控制葉片的鑄造質量,可以控制加工費用。
6結束語
篇5
20世紀中期,隨著電子技術的發展,自動信息處理、數據處理以及電子計算機的出現,給自動化技術帶來了新的概念,用數字化信號對機床運動及其加工過程進行控制,推動了機床自動化的發展。
采用數字技術進行機械加工,最早是在40年代初,由美國北密支安的一個小型飛機工業承包商派爾遜斯公司(ParsonsCorporation)實現的。他們在制造飛機的框架及直升飛機的轉動機翼時,利用全數字電子計算機對機翼加工路徑進行數據處理,并考慮到刀具直徑對加工路線的影響,使得加工精度達到±0.0381mm(±0.0015in),達到了當時的最高水平。
1952年,麻省理工學院在一臺立式銑床上,裝上了一套試驗性的數控系統,成功地實現了同時控制三軸的運動。這臺數控機床被大家稱為世界上第一臺數控機床。
這臺機床是一臺試驗性機床,到了1954年11月,在派爾遜斯專利的基礎上,第一臺工業用的數控機床由美國本迪克斯公司(Bendix-Cooperation)正式生產出來。
在此以后,從1960年開始,其他一些工業國家,如德國、日本都陸續開發、生產及使用了數控機床。
數控機床中最初出現并獲得使用的是數控銑床,因為數控機床能夠解決普通機床難于勝任的、需要進行輪廓加工的曲線或曲面零件。
然而,由于當時的數控系統采用的是電子管,體積龐大,功耗高,因此除了在軍事部門使用外,在其他行業沒有得到推廣使用。
到了1960年以后,點位控制的數控機床得到了迅速的發展。因為點位控制的數控系統比起輪廓控制的數控系統要簡單得多。因此,數控銑床、沖床、坐標鏜床大量發展,據統計資料表明,到1966年實際使用的約6000臺數控機床中,85%是點位控制的機床。
數控機床的發展中,值得一提的是加工中心。這是一種具有自動換刀裝置的數控機床,它能實現工件一次裝卡而進行多工序的加工。這種產品最初是在1959年3月,由美國卡耐·;特雷克公司(Keaney&TreckerCorp.)開發出來的。這種機床在刀庫中裝有絲錐、鉆頭、鉸刀、銑刀等刀具,根據穿孔帶的指令自動選擇刀具,并通過機械手將刀具裝在主軸上,對工件進行加工。它可縮短機床上零件的裝卸時間和更換刀具的時間。加工中心現在已經成為數控機床中一種非常重要的品種,不僅有立式、臥式等用于箱體零件加工的鏜銑類加工中心,還有用于回轉整體零件加工的車削中心、磨削中心等。
1967年,英國首先把幾臺數控機床連接成具有柔性的加工系統,這就是所謂的柔性制造系統(FlexibleManufacturingSystem——FMS)之后,美、歐、日等也相繼進行開發及應用。1974年以后,隨著微電子技術的迅速發展,微處理器直接用于數控機床,使數控的軟件功能加強,發展成計算機數字控制機床(簡稱為CNC機床),進一步推動了數控機床的普及應用和大力發展。
80年代,國際上出現了1~4臺加工中心或車削中心為主體,再配上工件自動裝卸和監控檢驗裝置的柔性制造單元(FlexibleManufacturingCell——FMC)。這種單元投資少,見效快,既可單獨長時間少人看管運行,也可集成到FMS或更高級的集成制造系統中使用。
目前,FMS也從切削加工向板材冷作、焊接、裝配等領域擴展,從中小批量加工向大批量加工發展。
所以機床數控技術,被認為是現代機械自動化的基礎技術。
那什么是車床呢?據資料所載,所謂車床,是主要用車刀對旋轉的工件進行車削加工的機床。在車床上還可用鉆頭、擴孔鉆、鉸刀、絲錐、板牙和滾花工具等進行相應的加工。車床主要用于加工軸、盤、套和其他具有回轉表面的工件,是機械制造和修配工廠中使用最廣的一類機床。
古代的車床是靠手拉或腳踏,通過繩索使工件旋轉,并手持刀具而進行切削的。1797年,英國機械發明家莫茲利創制了用絲杠傳動刀架的現代車床,并于1800年采用交換齒輪,可改變進給速度和被加工螺紋的螺距。1817年,另一位英國人羅伯茨采用了四級帶輪和背輪機構來改變主軸轉速。
為了提高機械化自動化程度,1845年,美國的菲奇發明轉塔車床;1848年,美國又出現回輪車床;1873年,美國的斯潘塞制成一臺單軸自動車床,不久他又制成三軸自動車床;20世紀初出現了由單獨電機驅動的帶有齒輪變速箱的車床。
第一次世界大戰后,由于軍火、汽車和其他機械工業的需要,各種高效自動車床和專門化車床迅速發展。為了提高小批量工件的生產率,40年代末,帶液壓仿形裝置的車床得到推廣,與此同時,多刀車床也得到發展。50年代中,發展了帶穿孔卡、插銷板和撥碼盤等的程序控制車床。數控技術于60年代開始用于車床,70年代后得到迅速發展。
車床依用途和功能區分為多種類型。
普通車床的加工對象廣,主軸轉速和進給量的調整范圍大,能加工工件的內外表面、端面和內外螺紋。這種車床主要由工人手工操作,生產效率低,適用于單件、小批生產和修配車間。
轉塔車床和回轉車床具有能裝多把刀具的轉塔刀架或回輪刀架,能在工件的一次裝夾中由工人依次使用不同刀具完成多種工序,適用于成批生產。
自動車床能按一定程序自動完成中小型工件的多工序加工,能自動上下料,重復加工一批同樣的工件,適用于大批、大量生產。
多刀半自動車床有單軸、多軸、臥式和立式之分。單軸臥式的布局形式與普通車床相似,但兩組刀架分別裝在主軸的前后或上下,用于加工盤、環和軸類工件,其生產率比普通車床提高3~5倍。
仿形車床能仿照樣板或樣件的形狀尺寸,自動完成工件的加工循環,適用于形狀較復雜的工件的小批和成批生產,生產率比普通車床高10~15倍。有多刀架、多軸、卡盤式、立式等類型
立式車床的主軸垂直于水平面,工件裝夾在水平的回轉工作臺上,刀架在橫粱或立柱上移動。適用于加工較大、較重、難于在普通車床上安裝的工件,一般分為單柱和雙柱兩大類。
鏟齒車床在車削的同時,刀架周期地作徑向往復運動,用于鏟車銑刀、滾刀等的成形齒面。通常帶有鏟磨附件,由單獨電動機驅動的小砂輪鏟磨齒面。
專門車床是用于加工某類工件的特定表面的車床,如曲軸車床、凸輪軸車床、車輪車床、車軸車床、軋輥車床和鋼錠車床等。聯合車床主要用于車削加工,但附加一些特殊部件和附件后,還可進行鏜、銑、鉆、插、磨等加工,具有“一機多能”的特點,適用于工程車、船舶或移動修理站
看機床的水平主要看金屬切削機床,其他機床技術和復雜性不高,就是近幾年很流行的電加工機床,也只是方法的改變,沒什么復雜性和科技含量。
我國的數控磨床水平不錯,每年都有大量出口,因為它簡單,基本屬于勞動密集型。
金屬加工主要是去除材料,得到想得到的金屬形狀。去除材料,主要靠車和銑,車床發展為數控車床,銑床發展為加工中心。高精度多軸機床,可以讓復雜零件在精度和形狀上一次到位,例如,飛機上的一個復雜零件,以前由很多種工人:車工、銑工、磨床工、畫線工、熱處理工用好幾個月干,其中還有報廢的,最新的復合數控機床幾天甚至幾個小時就全干好了,而且精度比你設計的還高。零件精度高就意味著壽命長,可靠性好。
由普通發展到數控,一個人頂原來的十個,在精度上,更是沒法說,適應性上,零件變了,換個程序就行。把人的因素也降為最低,以前在工廠,誰要時會車渦輪、蝸桿,沒個10年8年的不行,要是誰掌握了,那牛得很。現在用數控設備,只要你會編程,把參數輸進去就可以了,很簡單,剛畢業的技校學生都會,而且批量的產品質量也有保證。
自美國在50年代末搞出世界一臺數控車床后,機床制造業就進入了數控時代,中國在六十年代也搞出了第一代數控機床,但后來中國進入了什么年代,大家都知道。等80年代我們再去看世界的數控機床水平,差距就是20年了,其實奮起直追還有希望,但國營工廠不思進取,到了90年代,我們再去看世界水平,已有30年的差距了。中國改革開放前走的是蘇聯的路子,什么叫蘇聯的路子,舉個例子來講:比如,生產一根軸,蘇聯的方式是建一個專用生產線,用多臺專用機床,好處是批量很容易上去,但一旦這根軸的參數發生了變化,這條線就報廢了,生產人員也就沒事做了。在1960-1980年代,國營工廠一個產品生產幾十年不變樣。到了1980年代后,當時搞商品經濟,這些廠不能迅速適應市場,經營就困難了,到了90年代就大量破產,大量職工下崗。現代的生產也有大批量生產,但主要是單件小批量,不管是那種,只要你的設備是數控的,適應起來就快。專業機床的路子已經到頭了,;西方走的路和前蘇聯不一樣,當年的“東芝”事件,就是日本東芝賣給蘇聯了幾臺五軸聯動的數控銑床,讓蘇聯在潛艇的推進螺旋槳上的制造,上了一個檔次,讓美國的聲納聽不到潛艇聲音了,所以美國要懲處東芝公司。由此也可見,前蘇聯的機床制造業也落后了,他們落后,我們就更不用說了。雖然,美國搞出了世界第一臺數控機床,但數控機床的發展,還是要數德國。德國本來在機械方面就是世界第一,數控機床無非就是搞機電一體化,機械方面德國已沒問題,剩下的就是電子系統方面,德國的電子系統工業本來就強大,所以在上世紀六、七十年代,德國就執機床界的牛耳了。
但日本人的強項就是仿造,從上世紀70年代起,日本大量從德國引進技術,消化后大量仿造,經過努力,日本在90年代起,就超越了德國,成為世界第一大數控機床生產國,直到現在還是。他們在機床制造水平上,有一些也走在了世界前面,如在機床復合(一機多種功能)化方面,是世界第一。數控機床的核心就在數控系統方面,日本目前在系統方面也排世界第一,主要是它的發拿科公司。第一代的系統用步進電機,我們現在也能造,第二代用交流伺服電機。現在的數控系統的核心就是交流伺服電機和系統內的邏輯控制軟件,交流伺服電機我們國家目前還沒有誰能制造,這是一個光學、機械、電子的綜合體。邏輯控制軟件就是控制機床的各軸運動,而這些軸是用伺服電機驅動的,一般的系統能同時控制3軸,高級系統能控制五軸,能控5軸的,五軸以上也沒問題。我們國家也由有5軸系統,但“做秀”的成份多,還沒實用化。我們的工廠用的五軸和五軸以上機床,100%進口。
機床是一個國家制造業水平高低的象征,其核心就是數控系統。我們目前不要說系統,就是國內造的質量稍微好一點的數控機床,所用的高精度滾珠絲杠,軸承都是進口的,主要是買日本的,我們自產的滾珠絲杠、軸承在精度、壽命方面都有問題。目前國內的各大機床廠,數控系統100%外購,各廠家一般都買日本發那科、三菱的系統,占80%以上,也有德國西門子的系統,但比較少。德國西門子系統為什么用的少呢?早期,德國系統不太能適合我們的電網,我們的電網穩定性不夠,西門子系統的電子伺服模塊容易燒壞。日本就不同了,他們的系統就燒不壞。近來西門子系統改進了不少,價格方面還是略高。德國人很不重視中國,所以他們的系統漢語化最近才有,不像日本,老早就有漢語化版的。
就國產高級數控機床而言,其利潤的主體是被外國人拿走了,中國只是掙了一個辛苦錢。美國為什么沒有能成為數控機床制造大國呢?這個和他們當時制定產業政策的人有關,再加上當時美國的勞動力貴,買比制造劃算。機床屬于投資大,見效慢,回報率底的產業,而且需要技術積累。不太附和美國情況。但后來美國發現,機床屬于戰略物資,沒有它,飛機、大炮、坦克、軍艦的制造都有問題,所以他們重新制定政策,扶植了一些機床廠,規定了一些單位只能買國產設備,就是貴也得買,這就為美國保留了一些數控機床行業。美國機床在世界上沒有什么競爭力。
歐洲的機床,除德國外,瑞士的也很好,要說超高精密機床,瑞士的相當好,但價格也是天價。一般用戶用不起。意大利、英國、法國屬于二流,中國很少買他們的機床。西班牙為了讓中國進口他們的機床,不惜貸款給中國,但買的人也很少??借錢總是要還的。
韓國、臺灣的數控機床制造能力比大陸地區略強,不過水平差不多。他們也是在上世紀90年代引進日本技術發展的。韓國應該好一點,它有自己制造的、已經商業化了的數控系統,但進口到中國的機床,應我們的要求,也換成了日本系統。我們對他們的系統信不過。韓國數控機床主要有兩家:大宇和現代。大宇目前在我國設有合資企業。臺灣機床和我們大體一樣,自己造機械部分,系統采購日本的。但他們的機床質量差,壽命短,目前在大陸影響很壞。其實他們比我們國產的要好一點。但我們自己的差,我們還能容忍,臺灣的機床是用美金買來的,用的不好,那火就大了。臺灣最主要的幾家機床廠已打算把工廠遷往大陸,大部分都在上海。這些廠目前在國內的競爭中,也打著“國產”的旗號。
近來隨著中國的經濟發展,也引起了世界一些主要機床廠商的注意,2000年,日本最大的機床制造商“馬扎克”在中國銀川設立了一家數控機床合資廠,據說制造水平相當高,號稱“智能化、網絡化”工廠,和世界同步。今年日本另外一家大機床廠大隈公司在北京設立了一家能年產1000臺數控機床的控股公司,德國的一家很有名的企業也在上海設立了工廠。
目前,國家制定了一些政策,鼓勵國民使用國產數控機床,各廠家也在努力追趕。國內買機床最多的是軍工企業,一個購買計劃里,80%是進口,國產機床滿足不了需要。今后五年內,這個趨勢不會改變。不過就目前國內的需要來講,我國的數控機床目前能滿足中低檔產品的訂貨。
美、德、日三國是當今世上在數控機床科研、設計、制造和使用上,技術最先進、經驗最多的國家。因其社會條件不同,各有特點。
1.美國的數控發展史
美國政府重視機床工業,美國國防部等部門因其軍事方面的需求而不斷提出機床的發展方向、科研任務,并且提供充足的經費,且網羅世界人才,特別講究“效率”和“創新”,注重基礎科研。因而在機床技術上不斷創新,如1952年研制出世界第一臺數控機床、1958年創制出加工中心、70年代初研制成FMS、1987年首創開放式數控系統等。由於美國首先結合汽車、軸承生產需求,充分發展了大量大批生產自動化所需的自動線,而且電子、計算機技術在世界上領先,因此其數控機床的主機設計、制造及數控系統基礎扎實,且一貫重視科研和創新,故其高性能數控機床技術在世界也一直領先。當今美國生產宇航等使用的高性能數控機床,其存在的教訓是,偏重於基礎科研,忽視應用技術,且在上世紀80代政府一度放松了引導,致使數控機床產量增加緩慢,于1982年被后進的日本超過,并大量進口。從90年代起,糾正過去偏向,數控機床技術上轉向實用,產量又逐漸上升。
2.德國的數控發展史
德國政府一貫重視機床工業的重要戰略地位,在多方面大力扶植。,於1956年研制出第一臺數控機床后,德國特別注重科學試驗,理論與實際相結合,基礎科研與應用技術科研并重。企業與大學科研部門緊密合作,對數控機床的共性和特性問題進行深入的研究,在質量上精益求精。德國的數控機床質量及性能良好、先進實用、貨真價實,出口遍及世界。尤其是大型、重型、精密數控機床。德國特別重視數控機床主機及配套件之先進實用,其機、電、液、氣、光、刀具、測量、數控系統、各種功能部件,在質量、性能上居世界前列。如西門子公司之數控系統,均為世界聞名,競相采用。
3.日本的數控發展史
日本政府對機床工業之發展異常重視,通過規劃、法規(如“機振法”、“機電法”、“機信法”等)引導發展。在重視人才及機床元部件配套上學習德國,在質量管理及數控機床技術上學習美國,甚至青出于藍而勝于藍。自1958年研制出第一臺數控機床后,1978年產量(7,342臺)超過美國(5,688臺),至今產量、出口量一直居世界首位(2001年產量46,604臺,出口27,409臺,占59%)。戰略上先仿后創,先生產量大而廣的中檔數控機床,大量出口,占去世界廣大市場。在上世紀80年代開始進一步加強科研,向高性能數控機床發展。日本FANUC公司戰略正確,仿創結合,針對性地發展市場所需各種低中高檔數控系統,在技術上領先,在產量上居世界第一。該公司現有職工3,674人,科研人員超過600人,月產能力7,000套,銷售額在世界市場上占50%,在國內約占70%,對加速日本和世界數控機床的發展起了重大促進作用。4.我國的現狀
我國數控技術的發展起步于二十世紀五十年代,中國于1958年研制出第一臺數控機床,發展過程大致可分為兩大階段。在1958~1979年間為第一階段,從1979年至今為第二階段。第一階段中對數控機床特點、發展條件缺乏認識,在人員素質差、基礎薄弱、配套件不過關的情況下,一哄而上又一哄而下,曾三起三落、終因表現欠佳,無法用于生產而停頓。主要存在的問題是盲目性大,缺乏實事求是的科學精神。在第二階段從日、德、美、西班牙先后引進數控系統技術,從日、美、德、意、英、法、瑞士、匈、奧、韓國、臺灣省共11國(地區)引進數控機床先進技術和合作、合資生產,解決了可靠性、穩定性問題,數控機床開始正式生產和使用,并逐步向前發展。通過“六五”期間引進數控技術,“七五”期間組織消化吸收“科技攻關”,我國數控技術和數控產業取得了相當大的成績。特別是最近幾年,我國數控產業發展迅速,1998~2004年國產數控機床產量和消費量的年平均增長率分別為39.3%和34.9%。盡管如此,進口機床的發展勢頭依然強勁,從2002年開始,中國連續三年成為世界機床消費第一大國、機床進口第一大國,2004年中國機床主機消費高達94.6億美元,國內數控機床制造企業在中高檔與大型數控機床的研究開發方面與國外的差距更加明顯,70%以上的此類設備和絕大多數的功能部件均依賴進口。由此可以看出國產數控機床特別是中高檔數控機床仍然缺乏市場競爭力,究其原因主要在于國產數控機床的研究開發深度不夠、制造水平依然落后、服務意識與能力欠缺、數控,系統生產應用推廣不力及數控人才缺乏等。我們應看清形勢,充分認識國產數控機床的不足,努力發展先進技術,加大技術創新與培訓服務力度,以縮短與發達國家之問的差距。
在20余年間,數控機床的設計和制造技術有較大提高,主要表現在三大方面:培訓一批設計、制造、使用和維護的人才;通過合作生產先進數控機床,使設計、制造、使用水平大大提高,縮小了與世界先進技術的差距;通過利用國外先進元部件、數控系統配套,開始能自行設計及制造高速、高性能、五面或五軸聯動加工的數控機床,供應國內市場的需求,但對關鍵技術的試驗、消化、掌握及創新卻較差。至今許多重要功能部件、自動化刀具、數控系統依靠國外技術支撐,不能獨立發展,基本上處于從仿制走向自行開發階段,與日本數控機床的水平差距很大。存在的主要問題包括:缺乏象日本“機電法”、“機信法”那樣的指引;嚴重缺乏各方面專家人才和熟練技術工人;缺少深入系統的科研工作;元部件和數控系統不配套;企業和專業間缺乏合作,基本上孤軍作戰,雖然廠多人眾,但形成不了合力。我國數控技術的發展起步于二十世紀五十年代,通過“六五”期間引進數控技術,“七五”期間組織消化吸收“科技攻關”,我國數控技術和數控產業取得了相當大的成績。特別是最近幾年,我國數控產業發展迅速,1998~2004年國產數控機床產量和消費量的年平均增長率分別為39.3%和34.9%。盡管如此,進口機床的發展勢頭依然強勁,從2002年開始,中國連續三年成為世界機床消費第一大國、機床進口第一大國,2004年中國機床主機消費高達94.6億美元,國內數控機床制造企業在中高檔與大型數控機床的研究開發方面與國外的差距更加明顯,70%以上的此類設備和絕大多數的功能部件均依賴進口。由此可以看出國產數控機床特別是中高檔數控機床仍然缺乏市場競爭力,究其原因主要在于國產數控機床的研究開發深度不夠、制造水平依然落后、服務意識與能力欠缺、數控,系統生產應用推廣不力及數控人才缺乏等。我們應看清形勢,充分認識國產數控機床的不足,努力發展先進技術,加大技術創新與培訓服務力度,以縮短與發達國家之問的差距。
2003年開始,中國就成了全球最大的機床消費國,也是世界上最大的數控機床進口國。目前正在提高機械加工設備的數控化率,1999年,我們國家機械加工設備數控華率是5-8%,目前預計是15-20%之間。一、什么是數控機床車、銑、刨、磨、鏜、鉆、電火花、剪板、折彎、激光切割等等都是機械加工方法,所謂機械加工,就是把金屬毛坯零件加工成所需要的形狀,包含尺寸精度和幾何精度兩個方面。能完成以上功能的設備都稱為機床,數控機床就是在普通機床上發展過來的,數控的意思就是數字控制。給機床裝上數控系統后,機床就成了數控機床。當然,普通機床發展到數控機床不只是加裝系統這么簡單,例如:從銑床發展到加工中心,機床結構發生變化,最主要的是加了刀庫,大幅度提高了精度。加工中心最主要的功能是銑、鏜、鉆的功能。我們一般所說的數控設備,主要是指數控車床和加工中心。我國目前各種門類的數控機床都能生產,水平參差不齊,有的是世界水平,有的比國外落后10-15年,但如果國家支持,追趕起來也不是什么問題,例如:去年,沈陽機床集團收購了德國西思機床公司,意義很大,如果大力消化技術,可以縮短不少差距。大連機床公司也從德國引進了不少先進技術。上海一家企業購買日本著名的機床制造商池貝。,近幾年隨著中國制造的崛起,歐洲不少企業倒閉或者被兼并,如馬毫、斯濱納等。日本經濟不景氣,有不少在80年代很出名的機床制造商倒閉,例如:新瀉鐵工所。二、數控設備的發展方向六個方面:智能化、網絡化、高速、高精度、符合、環保。目前德國和瑞士的機床精度最高,綜合起來,德國的水平最高,日本的產值最大。美國的機床業一般。中國大陸、韓國。臺灣屬于同一水平。但就門類、種類多少而言,我們應該能進世界前4名。三、數控系統 由顯示器、控制器伺服、伺服電機、和各種開關、傳感器構成。目前世界最大的三家廠商是:日本發那客、德國西門子、日本三菱;其余還有法國扭姆、西班牙凡高等。國內由華中數控、航天數控等。國內的數控系統剛剛開始產業化、水平質量一般。高檔次的系統全都是進口。華中數控這幾年發展迅速,軟件水平相當不錯,但差就差在電器硬件上,故障率比較高。華中數控也有意向數控機床業進軍,但機床的硬件方面不行,質量精度一般。目前國內一些大廠還沒有采用華中數控的。廣州機床廠的簡易數控系統也不錯。我們國家機床業最薄弱的環節在數控系統。
四、機床精度1、機械加工機床精度分靜精度、加工精度(包括尺寸精度和幾何精度)、定位精度、重復定位精度等5種。2、機床精度體系:目前我們國家內承認的大致是四種體系:德國VDI標準、日本JIS標準、國際標準ISO標準、國標GB,國標和國際標準差不多。3、看一臺機床水平的高低,要看它的重復定位精度,一臺機床的重復定位精度如果能達到0.005mm(ISO標準.、統計法),就是一臺高精度機床,在0.005mm(ISO標準.、統計法)以下,就是超高精度機床,高精度的機床,要有最好的軸承、絲杠。;4、加工出高精度零件,不只要求機床精度高,還要有好的工藝方法、好的夾具、好的刀具。五、目前世界著名機床廠商在我國的投資情況1、2000年,世界最大的專業機床制造商馬扎克(MAZAK)在寧夏銀川投資建了名為“寧夏小巨人機床公司”的機床公司,生產數控車床、立式加工中心和車銑復合中心。機床質量不錯,目前效益良好,年產600臺,目前正在建2期工程,建成后可以年產1200臺。2、2003年,德國著名的機床制造商德馬吉在上海投資建廠,目前年組裝生產數控車床和立式加工中心120臺左右。3、2002年,日本著名的機床生產商大隈公司和北京第一機床廠合資建廠,年生產能力為1000臺,生產數控車床、立式加工中心、臥式加工中心。4、韓國大宇在山東青島投資建廠,目前生產能力不知。5、臺灣省的著名機床制造商友嘉在浙江蕭山投資建廠,年生產能力800臺。5、民營企業進入機床行業情況1、浙江日發公司,2000年投產,生產數控車床、加工中心。年生產能力300臺。2.2004年,浙江寧波著名的鑄塑機廠商海天公司投資生產機床,主要是從日本引進技術,目前剛開始,起點比較高。3.2002年,西安北村投產,名字象日本的,其實老板是中國人,采用日本技術。生產小型儀表數控車床,水平相當不錯。六、軍工企業技改情況軍工企業得到國家撥款開始于當年“大使館被炸”,后來臺灣上臺后,大規模技改開始了,軍工企業進入新一輪的技改高峰,我們很多軍工企業開始停止購買普通設備。尤其是近3年來,我們的軍工企業從歐洲和日本買了大批量的先進數控機床。也從國內機床廠哪里采購了大批普通數控機床,國內機床廠商為了迎接這次大技改,也引進了不少先進技術,爭取軍工企業的高端訂單。聽在軍工企業的朋友講,如果再能“頂”三年,我們的整體水平會上一個臺階。 其實,總書記掌權以來,已經把國防事業提到了和經濟發展一樣的高度上,他說,我們要建立和經濟發展相適應的國防能力,相信再過10年,隨著我國國防工業和汽車行業的發展,我們國家會誕生世界水平的機床制造商,也將會超越日本,成為世界第一機床生產大國。
參考文獻:
1.《機床與液壓》20041No171995-2005TsinghuaTongfang OpticalDiscCo¸,Ltd¸Allrightsreserved
2.參考資料:/f?kz=211006537
3.參考網址:/question/79231131.html?fr=qrl&fr2=query
4.《機床數控系統的發展趨勢》黃勇陳子辰浙江大學
5.《中國機械工程》
6.《數控機床及應用》作者:李佳
7.《機械設計與制造工程》2001年第30卷第1期
8《機電新產品導報》2005年第12期
9.《瞭望》2007年第37期
篇6
20世紀中期,隨著電子技術的發展,自動信息處理、數據處理以及電子計算機的出現,給自動化技術帶來了新的概念,用數字化信號對機床運動及其加工過程進行控制,推動了機床自動化的發展。
采用數字技術進行機械加工,最早是在40年代初,由美國北密支安的一個小型飛機工業承包商派爾遜斯公司(ParsonsCorporation)實現的。他們在制造飛機的框架及直升飛機的轉動機翼時,利用全數字電子計算機對機翼加工路徑進行數據處理,并考慮到刀具直徑對加工路線的影響,使得加工精度達到±0.0381mm(±0.0015in),達到了當時的最高水平。
1952年,麻省理工學院在一臺立式銑床上,裝上了一套試驗性的數控系統,成功地實現了同時控制三軸的運動。這臺數控機床被大家稱為世界上第一臺數控機床。
這臺機床是一臺試驗性機床,到了1954年11月,在派爾遜斯專利的基礎上,第一臺工業用的數控機床由美國本迪克斯公司(Bendix-Cooperation)正式生產出來。
在此以后,從1960年開始,其他一些工業國家,如德國、日本都陸續開發、生產及使用了數控機床。
數控機床中最初出現并獲得使用的是數控銑床,因為數控機床能夠解決普通機床難于勝任的、需要進行輪廓加工的曲線或曲面零件。
然而,由于當時的數控系統采用的是電子管,體積龐大,功耗高,因此除了在軍事部門使用外,在其他行業沒有得到推廣使用。
到了1960年以后,點位控制的數控機床得到了迅速的發展。因為點位控制的數控系統比起輪廓控制的數控系統要簡單得多。因此,數控銑床、沖床、坐標鏜床大量發展,據統計資料表明,到1966年實際使用的約6000臺數控機床中,85%是點位控制的機床。
數控機床的發展中,值得一提的是加工中心。這是一種具有自動換刀裝置的數控機床,它能實現工件一次裝卡而進行多工序的加工。這種產品最初是在1959年3月,由美國卡耐·;特雷克公司(Keaney&TreckerCorp.)開發出來的。這種機床在刀庫中裝有絲錐、鉆頭、鉸刀、銑刀等刀具,根據穿孔帶的指令自動選擇刀具,并通過機械手將刀具裝在主軸上,對工件進行加工。它可縮短機床上零件的裝卸時間和更換刀具的時間。加工中心現在已經成為數控機床中一種非常重要的品種,不僅有立式、臥式等用于箱體零件加工的鏜銑類加工中心,還有用于回轉整體零件加工的車削中心、磨削中心等。
1967年,英國首先把幾臺數控機床連接成具有柔性的加工系統,這就是所謂的柔性制造系統(FlexibleManufacturingSystem——FMS)之后,美、歐、日等也相繼進行開發及應用。1974年以后,隨著微電子技術的迅速發展,微處理器直接用于數控機床,使數控的軟件功能加強,發展成計算機數字控制機床(簡稱為CNC機床),進一步推動了數控機床的普及應用和大力發展。
80年代,國際上出現了1~4臺加工中心或車削中心為主體,再配上工件自動裝卸和監控檢驗裝置的柔性制造單元(FlexibleManufacturingCell——FMC)。這種單元投資少,見效快,既可單獨長時間少人看管運行,也可集成到FMS或更高級的集成制造系統中使用。
目前,FMS也從切削加工向板材冷作、焊接、裝配等領域擴展,從中小批量加工向大批量加工發展。
所以機床數控技術,被認為是現代機械自動化的基礎技術。
那什么是車床呢?據資料所載,所謂車床,是主要用車刀對旋轉的工件進行車削加工的機床。在車床上還可用鉆頭、擴孔鉆、鉸刀、絲錐、板牙和滾花工具等進行相應的加工。車床主要用于加工軸、盤、套和其他具有回轉表面的工件,是機械制造和修配工廠中使用最廣的一類機床。
古代的車床是靠手拉或腳踏,通過繩索使工件旋轉,并手持刀具而進行切削的。1797年,英國機械發明家莫茲利創制了用絲杠傳動刀架的現代車床,并于1800年采用交換齒輪,可改變進給速度和被加工螺紋的螺距。1817年,另一位英國人羅伯茨采用了四級帶輪和背輪機構來改變主軸轉速。
為了提高機械化自動化程度,1845年,美國的菲奇發明轉塔車床;1848年,美國又出現回輪車床;1873年,美國的斯潘塞制成一臺單軸自動車床,不久他又制成三軸自動車床;20世紀初出現了由單獨電機驅動的帶有齒輪變速箱的車床。
第一次世界大戰后,由于軍火、汽車和其他機械工業的需要,各種高效自動車床和專門化車床迅速發展。為了提高小批量工件的生產率,40年代末,帶液壓仿形裝置的車床得到推廣,與此同時,多刀車床也得到發展。50年代中,發展了帶穿孔卡、插銷板和撥碼盤等的程序控制車床。數控技術于60年代開始用于車床,70年代后得到迅速發展。
車床依用途和功能區分為多種類型。
普通車床的加工對象廣,主軸轉速和進給量的調整范圍大,能加工工件的內外表面、端面和內外螺紋。這種車床主要由工人手工操作,生產效率低,適用于單件、小批生產和修配車間。
轉塔車床和回轉車床具有能裝多把刀具的轉塔刀架或回輪刀架,能在工件的一次裝夾中由工人依次使用不同刀具完成多種工序,適用于成批生產。
自動車床能按一定程序自動完成中小型工件的多工序加工,能自動上下料,重復加工一批同樣的工件,適用于大批、大量生產。
多刀半自動車床有單軸、多軸、臥式和立式之分。單軸臥式的布局形式與普通車床相似,但兩組刀架分別裝在主軸的前后或上下,用于加工盤、環和軸類工件,其生產率比普通車床提高3~5倍。
仿形車床能仿照樣板或樣件的形狀尺寸,自動完成工件的加工循環,適用于形狀較復雜的工件的小批和成批生產,生產率比普通車床高10~15倍。有多刀架、多軸、卡盤式、立式等類型
立式車床的主軸垂直于水平面,工件裝夾在水平的回轉工作臺上,刀架在橫粱或立柱上移動。適用于加工較大、較重、難于在普通車床上安裝的工件,一般分為單柱和雙柱兩大類。
鏟齒車床在車削的同時,刀架周期地作徑向往復運動,用于鏟車銑刀、滾刀等的成形齒面。通常帶有鏟磨附件,由單獨電動機驅動的小砂輪鏟磨齒面。
專門車床是用于加工某類工件的特定表面的車床,如曲軸車床、凸輪軸車床、車輪車床、車軸車床、軋輥車床和鋼錠車床等。聯合車床主要用于車削加工,但附加一些特殊部件和附件后,還可進行鏜、銑、鉆、插、磨等加工,具有“一機多能”的特點,適用于工程車、船舶或移動修理站
看機床的水平主要看金屬切削機床,其他機床技術和復雜性不高,就是近幾年很流行的電加工機床,也只是方法的改變,沒什么復雜性和科技含量。
我國的數控磨床水平不錯,每年都有大量出口,因為它簡單,基本屬于勞動密集型。
金屬加工主要是去除材料,得到想得到的金屬形狀。去除材料,主要靠車和銑,車床發展為數控車床,銑床發展為加工中心。高精度多軸機床,可以讓復雜零件在精度和形狀上一次到位,例如,飛機上的一個復雜零件,以前由很多種工人:車工、銑工、磨床工、畫線工、熱處理工用好幾個月干,其中還有報廢的,最新的復合數控機床幾天甚至幾個小時就全干好了,而且精度比你設計的還高。零件精度高就意味著壽命長,可靠性好。
由普通發展到數控,一個人頂原來的十個,在精度上,更是沒法說,適應性上,零件變了,換個程序就行。把人的因素也降為最低,以前在工廠,誰要時會車渦輪、蝸桿,沒個10年8年的不行,要是誰掌握了,那牛得很。現在用數控設備,只要你會編程,把參數輸進去就可以了,很簡單,剛畢業的技校學生都會,而且批量的產品質量也有保證。
自美國在50年代末搞出世界一臺數控車床后,機床制造業就進入了數控時代,中國在六十年代也搞出了第一代數控機床,但后來中國進入了什么年代,大家都知道。等80年代我們再去看世界的數控機床水平,差距就是20年了,其實奮起直追還有希望,但國營工廠不思進取,到了90年代,我們再去看世界水平,已有30年的差距了。中國改革開放前走的是蘇聯的路子,什么叫蘇聯的路子,舉個例子來講:比如,生產一根軸,蘇聯的方式是建一個專用生產線,用多臺專用機床,好處是批量很容易上去,但一旦這根軸的參數發生了變化,這條線就報廢了,生產人員也就沒事做了。在1960-1980年代,國營工廠一個產品生產幾十年不變樣。到了1980年代后,當時搞商品經濟,這些廠不能迅速適應市場,經營就困難了,到了90年代就大量破產,大量職工下崗。現代的生產也有大批量生產,但主要是單件小批量,不管是那種,只要你的設備是數控的,適應起來就快。專業機床的路子已經到頭了,;西方走的路和前蘇聯不一樣,當年的“東芝”事件,就是日本東芝賣給蘇聯了幾臺五軸聯動的數控銑床,讓蘇聯在潛艇的推進螺旋槳上的制造,上了一個檔次,讓美國的聲納聽不到潛艇聲音了,所以美國要懲處東芝公司。由此也可見,前蘇聯的機床制造業也落后了,他們落后,我們就更不用說了。雖然,美國搞出了世界第一臺數控機床,但數控機床的發展,還是要數德國。德國本來在機械方面就是世界第一,數控機床無非就是搞機電一體化,機械方面德國已沒問題,剩下的就是電子系統方面,德國的電子系統工業本來就強大,所以在上世紀六、七十年代,德國就執機床界的牛耳了。
但日本人的強項就是仿造,從上世紀70年代起,日本大量從德國引進技術,消化后大量仿造,經過努力,日本在90年代起,就超越了德國,成為世界第一大數控機床生產國,直到現在還是。他們在機床制造水平上,有一些也走在了世界前面,如在機床復合(一機多種功能)化方面,是世界第一。數控機床的核心就在數控系統方面,日本目前在系統方面也排世界第一,主要是它的發拿科公司。第一代的系統用步進電機,我們現在也能造,第二代用交流伺服電機。現在的數控系統的核心就是交流伺服電機和系統內的邏輯控制軟件,交流伺服電機我們國家目前還沒有誰能制造,這是一個光學、機械、電子的綜合體。邏輯控制軟件就是控制機床的各軸運動,而這些軸是用伺服電機驅動的,一般的系統能同時控制3軸,高級系統能控制五軸,能控5軸的,五軸以上也沒問題。我們國家也由有5軸系統,但“做秀”的成份多,還沒實用化。我們的工廠用的五軸和五軸以上機床,100%進口。
機床是一個國家制造業水平高低的象征,其核心就是數控系統。我們目前不要說系統,就是國內造的質量稍微好一點的數控機床,所用的高精度滾珠絲杠,軸承都是進口的,主要是買日本的,我們自產的滾珠絲杠、軸承在精度、壽命方面都有問題。目前國內的各大機床廠,數控系統100%外購,各廠家一般都買日本發那科、三菱的系統,占80%以上,也有德國西門子的系統,但比較少。德國西門子系統為什么用的少呢?早期,德國系統不太能適合我們的電網,我們的電網穩定性不夠,西門子系統的電子伺服模塊容易燒壞。日本就不同了,他們的系統就燒不壞。近來西門子系統改進了不少,價格方面還是略高。德國人很不重視中國,所以他們的系統漢語化最近才有,不像日本,老早就有漢語化版的。
就國產高級數控機床而言,其利潤的主體是被外國人拿走了,中國只是掙了一個辛苦錢。
美國為什么沒有能成為數控機床制造大國呢?這個和他們當時制定產業政策的人有關,再加上當時美國的勞動力貴,買比制造劃算。機床屬于投資大,見效慢,回報率底的產業,而且需要技術積累。不太附和美國情況。但后來美國發現,機床屬于戰略物資,沒有它,飛機、大炮、坦克、軍艦的制造都有問題,所以他們重新制定政策,扶植了一些機床廠,規定了一些單位只能買國產設備,就是貴也得買,這就為美國保留了一些數控機床行業。美國機床在世界上沒有什么競爭力。
歐洲的機床,除德國外,瑞士的也很好,要說超高精密機床,瑞士的相當好,但價格也是天價。一般用戶用不起。意大利、英國、法國屬于二流,中國很少買他們的機床。西班牙為了讓中國進口他們的機床,不惜貸款給中國,但買的人也很少??借錢總是要還的。
韓國、臺灣的數控機床制造能力比大陸地區略強,不過水平差不多。他們也是在上世紀90年代引進日本技術發展的。韓國應該好一點,它有自己制造的、已經商業化了的數控系統,但進口到中國的機床,應我們的要求,也換成了日本系統。我們對他們的系統信不過。韓國數控機床主要有兩家:大宇和現代。大宇目前在我國設有合資企業。臺灣機床和我們大體一樣,自己造機械部分,系統采購日本的。但他們的機床質量差,壽命短,目前在大陸影響很壞。其實他們比我們國產的要好一點。但我們自己的差,我們還能容忍,臺灣的機床是用美金買來的,用的不好,那火就大了。臺灣最主要的幾家機床廠已打算把工廠遷往大陸,大部分都在上海。這些廠目前在國內的競爭中,也打著“國產”的旗號。
近來隨著中國的經濟發展,也引起了世界一些主要機床廠商的注意,2000年,日本最大的機床制造商“馬扎克”在中國銀川設立了一家數控機床合資廠,據說制造水平相當高,號稱“智能化、網絡化”工廠,和世界同步。今年日本另外一家大機床廠大隈公司在北京設立了一家能年產1000臺數控機床的控股公司,德國的一家很有名的企業也在上海設立了工廠。
目前,國家制定了一些政策,鼓勵國民使用國產數控機床,各廠家也在努力追趕。國內買機床最多的是軍工企業,一個購買計劃里,80%是進口,國產機床滿足不了需要。今后五年內,這個趨勢不會改變。不過就目前國內的需要來講,我國的數控機床目前能滿足中低檔產品的訂貨。
美、德、日三國是當今世上在數控機床科研、設計、制造和使用上,技術最先進、經驗最多的國家。因其社會條件不同,各有特點。
1.美國的數控發展史
美國政府重視機床工業,美國國防部等部門因其軍事方面的需求而不斷提出機床的發展方向、科研任務,并且提供充足的經費,且網羅世界人才,特別講究“效率”和“創新”,注重基礎科研。因而在機床技術上不斷創新,如1952年研制出世界第一臺數控機床、1958年創制出加工中心、70年代初研制成FMS、1987年首創開放式數控系統等。由於美國首先結合汽車、軸承生產需求,充分發展了大量大批生產自動化所需的自動線,而且電子、計算機技術在世界上領先,因此其數控機床的主機設計、制造及數控系統基礎扎實,且一貫重視科研和創新,故其高性能數控機床技術在世界也一直領先。當今美國生產宇航等使用的高性能數控機床,其存在的教訓是,偏重於基礎科研,忽視應用技術,且在上世紀80代政府一度放松了引導,致使數控機床產量增加緩慢,于1982年被后進的日本超過,并大量進口。從90年代起,糾正過去偏向,數控機床技術上轉向實用,產量又逐漸上升。
2.德國的數控發展史
德國政府一貫重視機床工業的重要戰略地位,在多方面大力扶植。,於1956年研制出第一臺數控機床后,德國特別注重科學試驗,理論與實際相結合,基礎科研與應用技術科研并重。企業與大學科研部門緊密合作,對數控機床的共性和特性問題進行深入的研究,在質量上精益求精。德國的數控機床質量及性能良好、先進實用、貨真價實,出口遍及世界。尤其是大型、重型、精密數控機床。德國特別重視數控機床主機及配套件之先進實用,其機、電、液、氣、光、刀具、測量、數控系統、各種功能部件,在質量、性能上居世界前列。如西門子公司之數控系統,均為世界聞名,競相采用。
3.日本的數控發展史
日本政府對機床工業之發展異常重視,通過規劃、法規(如“機振法”、“機電法”、“機信法”等)引導發展。在重視人才及機床元部件配套上學習德國,在質量管理及數控機床技術上學習美國,甚至青出于藍而勝于藍。自1958年研制出第一臺數控機床后,1978年產量(7,342臺)超過美國(5,688臺),至今產量、出口量一直居世界首位(2001年產量46,604臺,出口27,409臺,占59%)。戰略上先仿后創,先生產量大而廣的中檔數控機床,大量出口,占去世界廣大市場。在上世紀80年代開始進一步加強科研,向高性能數控機床發展。日本FANUC公司戰略正確,仿創結合,針對性地發展市場所需各種低中高檔數控系統,在技術上領先,在產量上居世界第一。該公司現有職工3,674人,科研人員超過600人,月產能力7,000套,銷售額在世界市場上占50%,在國內約占70%,對加速日本和世界數控機床的發展起了重大促進作用。
4.我國的現狀
我國數控技術的發展起步于二十世紀五十年代,中國于1958年研制出第一臺數控機床,發展過程大致可分為兩大階段。在1958~1979年間為第一階段,從1979年至今為第二階段。第一階段中對數控機床特點、發展條件缺乏認識,在人員素質差、基礎薄弱、配套件不過關的情況下,一哄而上又一哄而下,曾三起三落、終因表現欠佳,無法用于生產而停頓。主要存在的問題是盲目性大,缺乏實事求是的科學精神。在第二階段從日、德、美、西班牙先后引進數控系統技術,從日、美、德、意、英、法、瑞士、匈、奧、韓國、臺灣省共11國(地區)引進數控機床先進技術和合作、合資生產,解決了可靠性、穩定性問題,數控機床開始正式生產和使用,并逐步向前發展。通過“六五”期間引進數控技術,“七五”期間組織消化吸收“科技攻關”,我國數控技術和數控產業取得了相當大的成績。特別是最近幾年,我國數控產業發展迅速,1998~2004年國產數控機床產量和消費量的年平均增長率分別為39.3%和34.9%。盡管如此,進口機床的發展勢頭依然強勁,從2002年開始,中國連續三年成為世界機床消費第一大國、機床進口第一大國,2004年中國機床主機消費高達94.6億美元,國內數控機床制造企業在中高檔與大型數控機床的研究開發方面與國外的差距更加明顯,70%以上的此類設備和絕大多數的功能部件均依賴進口。由此可以看出國產數控機床特別是中高檔數控機床仍然缺乏市場競爭力,究其原因主要在于國產數控機床的研究開發深度不夠、制造水平依然落后、服務意識與能力欠缺、數控,系統生產應用推廣不力及數控人才缺乏等。我們應看清形勢,充分認識國產數控機床的不足,努力發展先進技術,加大技術創新與培訓服務力度,以縮短與發達國家之問的差距。
在20余年間,數控機床的設計和制造技術有較大提高,主要表現在三大方面:培訓一批設計、制造、使用和維護的人才;通過合作生產先進數控機床,使設計、制造、使用水平大大提高,縮小了與世界先進技術的差距;通過利用國外先進元部件、數控系統配套,開始能自行設計及制造高速、高性能、五面或五軸聯動加工的數控機床,供應國內市場的需求,但對關鍵技術的試驗、消化、掌握及創新卻較差。至今許多重要功能部件、自動化刀具、數控系統依靠國外技術支撐,不能獨立發展,基本上處于從仿制走向自行開發階段,與日本數控機床的水平差距很大。存在的主要問題包括:缺乏象日本“機電法”、“機信法”那樣的指引;嚴重缺乏各方面專家人才和熟練技術工人;缺少深入系統的科研工作;元部件和數控系統不配套;企業和專業間缺乏合作,基本上孤軍作戰,雖然廠多人眾,但形成不了合力。我國數控技術的發展起步于二十世紀五十年代,通過“六五”期間引進數控技術,“七五”期間組織消化吸收“科技攻關”,我國數控技術和數控產業取得了相當大的成績。特別是最近幾年,我國數控產業發展迅速,1998~2004年國產數控機床產量和消費量的年平均增長率分別為39.3%和34.9%。盡管如此,進口機床的發展勢頭依然強勁,從2002年開始,中國連續三年成為世界機床消費第一大國、機床進口第一大國,2004年中國機床主機消費高達94.6億美元,國內數控機床制造企業在中高檔與大型數控機床的研究開發方面與國外的差距更加明顯,70%以上的此類設備和絕大多數的功能部件均依賴進口。由此可以看出國產數控機床特別是中高檔數控機床仍然缺乏市場競爭力,究其原因主要在于國產數控機床的研究開發深度不夠、制造水平依然落后、服務意識與能力欠缺、數控,系統生產應用推廣不力及數控人才缺乏等。我們應看清形勢,充分認識國產數控機床的不足,努力發展先進技術,加大技術創新與培訓服務力度,以縮短與發達國家之問的差距。
2003年開始,中國就成了全球最大的機床消費國,也是世界上最大的數控機床進口國。目前正在提高機械加工設備的數控化率,1999年,我們國家機械加工設備數控華率是5-8%,目前預計是15-20%之間。一、什么是數控機床車、銑、刨、磨、鏜、鉆、電火花、剪板、折彎、激光切割等等都是機械加工方法,所謂機械加工,就是把金屬毛坯零件加工成所需要的形狀,包含尺寸精度和幾何精度兩個方面。能完成以上功能的設備都稱為機床,數控機床就是在普通機床上發展過來的,數控的意思就是數字控制。給機床裝上數控系統后,機床就成了數控機床。當然,普通機床發展到數控機床不只是加裝系統這么簡單,例如:從銑床發展到加工中心,機床結構發生變化,最主要的是加了刀庫,大幅度提高了精度。加工中心最主要的功能是銑、鏜、鉆的功能。我們一般所說的數控設備,主要是指數控車床和加工中心。我國目前各種門類的數控機床都能生產,水平參差不齊,有的是世界水平,有的比國外落后10-15年,但如果國家支持,追趕起來也不是什么問題,例如:去年,沈陽機床集團收購了德國西思機床公司,意義很大,如果大力消化技術,可以縮短不少差距。大連機床公司也從德國引進了不少先進技術。上海一家企業購買日本著名的機床制造商池貝。,近幾年隨著中國制造的崛起,歐洲不少企業倒閉或者被兼并,如馬毫、斯濱納等。日本經濟不景氣,有不少在80年代很出名的機床制造商倒閉,例如:新瀉鐵工所。二、數控設備的發展方向六個方面:智能化、網絡化、高速、高精度、符合、環保。目前德國和瑞士的機床精度最高,綜合起來,德國的水平最高,日本的產值最大。美國的機床業一般。中國大陸、韓國。臺灣屬于同一水平。但就門類、種類多少而言,我們應該能進世界前4名。三、數控系統 由顯示器、控制器伺服、伺服電機、和各種開關、傳感器構成。目前世界最大的三家廠商是:日本發那客、德國西門子、日本三菱;其余還有法國扭姆、西班牙凡高等。國內由華中數控、航天數控等。國內的數控系統剛剛開始產業化、水平質量一般。高檔次的系統全都是進口。華中數控這幾年發展迅速,軟件水平相當不錯,但差就差在電器硬件上,故障率比較高。華中數控也有意向數控機床業進軍,但機床的硬件方面不行,質量精度一般。目前國內一些大廠還沒有采用華中數控的。廣州機床廠的簡易數控系統也不錯。我們國家機床業最薄弱的環節在數控系統。
四、機床精度1、機械加工機床精度分靜精度、加工精度(包括尺寸精度和幾何精度)、定位精度、重復定位精度等5種。2、機床精度體系:目前我們國家內承認的大致是四種體系:德國VDI標準、日本JIS標準、國際標準ISO標準、國標GB,國標和國際標準差不多。3、看一臺機床水平的高低,要看它的重復定位精度,一臺機床的重復定位精度如果能達到0.005mm(ISO標準.、統計法),就是一臺高精度機床,在0.005mm(ISO標準.、統計法)以下,就是超高精度機床,高精度的機床,要有最好的軸承、絲杠。;4、加工出高精度零件,不只要求機床精度高,還要有好的工藝方法、好的夾具、好的刀具。五、目前世界著名機床廠商在我國的投資情況1、2000年,世界最大的專業機床制造商馬扎克(MAZAK)在寧夏銀川投資建了名為“寧夏小巨人機床公司”的機床公司,生產數控車床、立式加工中心和車銑復合中心。機床質量不錯,目前效益良好,年產600臺,目前正在建2期工程,建成后可以年產1200臺。2、2003年,德國著名的機床制造商德馬吉在上海投資建廠,目前年組裝生產數控車床和立式加工中心120臺左右。3、2002年,日本著名的機床生產商大隈公司和北京第一機床廠合資建廠,年生產能力為1000臺,生產數控車床、立式加工中心、臥式加工中心。4、韓國大宇在山東青島投資建廠,目前生產能力不知。5、臺灣省的著名機床制造商友嘉在浙江蕭山投資建廠,年生產能力800臺。5、民營企業進入機床行業情況1、浙江日發公司,2000年投產,生產數控車床、加工中心。年生產能力300臺。2.2004年,浙江寧波著名的鑄塑機廠商海天公司投資生產機床,主要是從日本引進技術,目前剛開始,起點比較高。3.2002年,西安北村投產,名字象日本的,其實老板是中國人,采用日本技術。生產小型儀表數控車床,水平相當不錯。六、軍工企業技改情況軍工企業得到國家撥款開始于當年“大使館被炸”,后來臺灣上臺后,大規模技改開始了,軍工企業進入新一輪的技改高峰,我們很多軍工企業開始停止購買普通設備。尤其是近3年來,我們的軍工企業從歐洲和日本買了大批量的先進數控機床。也從國內機床廠哪里采購了大批普通數控機床,國內機床廠商為了迎接這次大技改,也引進了不少先進技術,爭取軍工企業的高端訂單。聽在軍工企業的朋友講,如果再能“頂”三年,我們的整體水平會上一個臺階。 其實,總書記掌權以來,已經把國防事業提到了和經濟發展一樣的高度上,他說,我們要建立和經濟發展相適應的國防能力,相信再過10年,隨著我國國防工業和汽車行業的發展,我們國家會誕生世界水平的機床制造商,也將會超越日本,成為世界第一機床生產大國。
參考文獻:
1.《機床與液壓》20041No171995-2005TsinghuaTongfang OpticalDiscCo¸,Ltd¸Allrightsreserved
4.《機床數控系統的發展趨勢》黃勇陳子辰浙江大學
5.《中國機械工程》
6.《數控機床及應用》作者:李佳
7.《機械設計與制造工程》2001年第30卷第1期
8《機電新產品導報》2005年第12期
9.《瞭望》2007年第37期
篇7
論文摘要:本文首先介紹了機床數控化改造的必要性,而重點在于介紹如何進行機床數控化改造,包括數控系統的選擇、數控改造中對主要機械部件改裝探討和機床數控改造主要步驟,并列舉了幾個數控改造的實例,最后說明了數控改造中的問題并提出了建議。
1機床進行數控化改造的必要性
微觀上看,數控機床比傳統機床有以下突出的優越性,而且些優越性均來自數控系統所包含的計算機的威力。
由于計算機有高超的運算能力,可以瞬時準確地計算出每個坐標軸瞬時應該運動的運動量,因此可以復合成復雜的曲線或曲面。
可以實現加工的自動化,而且柔性自動化,從而效率可比傳統機床提高3~7倍。
由于計算機有記憶和存儲能力,可以將輸入的程序記住和存儲下來,然后按程序規定的順序自動去執行,從而實現自動化。數控機床只要更換一個程序,就可實現另一工件加工的自動化,從而使單件和小批生產得以自動化,故被稱為實現了“柔性自動化”。
加工零件的精度高,尺寸分散度小,使裝配容易,不再需要“修配”。
可實現多工序的集中,減少零件在機床間的頻繁搬運。擁有自動報警、自動監控、自動補償等多種自律功能,因而可實現時間無看管加工。由以上五條派生的好處。如:降低了工人的勞動強度,節省了勞動力(一個人可以看管多臺機床),減少了工裝,縮短了新產品試制周期和生產周期,可對市場需求作出快速反應等等。
以上這些優越性是前人想象不到的,是一個極為重大的突破。此外,機床數控化還是推行FMC(柔性制造單元)、FMS(柔性制造系統)以及CIMS(計算機集成制造系統)等企業信息化改造的基礎。數控技術已經成為制造業自動化的核心技術和基礎技術。
宏觀上看,工業發達家的軍、民機械工業,在70年代末、80年代初已開始大規模應用數控機床。其本質是,采用信息技術對傳統產業(包括軍、民機械工業)進行技術改造。除在制造過程中采用數控機床、FMC、FMS外,還包括在產品開發中推行CAD、CAE、CAM、虛擬制造以及在生產管理中推行MIS(管理信息系統)、CIMS等等。以及在其生產的產品中增加信息技術,包括人工智能等的含量。由于采用信息技術對國外軍、民機械工業進行深入改造(稱之為信息化),最終使得他們的產品在國際軍品和民品的市場上競爭力大為增強。而我們在信息技術改造傳統產業方面比發達國家約落后20年。如我國機床擁有量中,數控機床的比重(數控化率)到1995年只有1.9%,而日本在1994年已達20.8%,因此每年都有大量機電產品進口。這也就從宏觀上說明了機床數控化改造的必要性。
2如何進行機床數控化改造
2.1數控化改造的內容。機床與生產線的數控化改造主要內容有以下幾點:其一是恢復原功能,對機床、生產線存在的故障部分進行診斷并恢復;其二是NC化,在普通機床上加數顯裝置,或加數控系統,改造成NC機床、CNC機床;其三是翻新,為提高精度、效率和自動化程度,對機械、電氣部分進行翻新,對機械部分重新裝配加工,恢復原精度;對其不滿足生產要求的CNC系統以最新CNC進行更新;其四是技術更新或技術創新,為提高性能或檔次,或為了使用新工藝、新技術,在原有基礎上進行較大規模的技術更新或技術創新,較大幅度地提高水平和檔次的更新改造。
2.2數控系統的選擇
數控系統主要有三種類型,改造時,應根據具體情況進行選擇。
步進電機拖動的開環系統。該系統的伺服驅動裝置主要是步進電機、功率步進電機、電液脈沖馬達等。由數控系統送出的進給指令脈沖,經驅動電路控制和功率放大后,使步進電機轉動,通過齒輪副與滾珠絲杠副驅動執行部件。只要控制指令脈沖的數量、頻率以及通電順序,便可控制執行部件運動的位移量、速度和運動方向。這種系統不需要將所測得的實際位置和速度反饋到輸入端,故稱之為開環系統,該系統的位移精度主要決定于步進電機的角位移精度,齒輪絲杠等傳動元件的節距精度,所以系統的位移精度較低。該系統結構簡單,調試維修方便,工作可靠,成本低,易改裝成功。
異步電動機或直流電機拖動,光柵測量反饋的閉環數控系統。該系統與開環系統的區別是:由光柵、感應同步器等位置檢測裝置測得的實際位置反饋信號,隨時與給定值進行比較,將兩者的差值放大和變換,驅動執行機構,以給定的速度向著消除偏差的方向運動,直到給定位置與反饋的實際位置的差值等于零為止。閉環進給系統在結構上比開環進給系統復雜,成本也高,對環境室溫要求嚴。設計和調試都比開環系統難。但是可以獲得比開環進給系統更高的精度,更快的速度,驅動功率更大的特性指標。可根據產品技術要求,決定是否采用這種系統。
交/直流伺服電機拖動,編碼器反饋的半閉環數控系統。半閉環系統檢測元件安裝在中間傳動件上,間接測量執行部件的位置。它只能補償系統環路內部部分元件的誤差,因此,它的精度比閉環系統的精度低,但是它的結構與調試都較閉環系統簡單。在將角位移檢測元件與速度檢測元件和伺服電機作成一個整體時則無需考慮位置檢測裝置的安裝問題。當前生產數控系統的公司廠家比較多,國外著名公司的如德國SIEMENS公司、日本FANUC公司;國內公司如中國珠峰公司、北京航天機床數控系統集團公司、華中數控公司和沈陽高檔數控國家工程研究中心。選擇數控系統時主要是根據數控改造后機床要達到的各種精度、驅動電機的功率和用戶的要求。3數控改造中主要機械部件改裝探討。
一臺新的數控機床,在設計上要達到:有高的靜動態剛度;運動副之間的摩擦系數小,傳動無間隙;功率大;便于操作和維修。機床數控改造時應盡量達到上述要求。不能認為將數控裝置與普通機床連接在一起就達到了數控機床的要求,還應對主要部件進行相應的改造使其達到一定的設計要求,才能獲得預期的改造目的。
滑動導軌副。對數控車床來說,導軌除應具有普通車床導向精度和工藝性外,還要有良好的耐摩擦、磨損特性,并減少因摩擦阻力而致死區。同時要有足夠的剛度,以減少導軌變形對加工精度的影響,要有合理的導軌防護和。
齒輪副。一般機床的齒輪主要集中在主軸箱和變速箱中。為了保證傳動精度,數控機床上使用的齒輪精度等級都比普通機床高。在結構上要能達到無間隙傳動,因而改造時,機床主要齒輪必須滿足數控機床的要求,以保證機床加工精度。
滑動絲杠與滾珠絲杠。絲杠傳動直接關系到傳動鏈精度。絲杠的選用主要取決于加工件的精度要求和拖動扭矩要求。被加工件精度要求不高時可采用滑動絲杠,但應檢查原絲杠磨損情況,如螺距誤差及螺距累計誤差以及相配螺母間隙。一般情況滑動絲杠應不低于6級,螺母間隙過大則更換螺母。采用滑動絲杠相對滾珠絲杠價格較低,但難以滿足精度較高的零件加工。
篇8
關鍵詞: 數控機床 制造強國 發展趨勢
數控技術是先進制造技術中的一項核心技術,由數控機床組成的柔性化制造系統是改造傳統機械加工裝備產業、構建數字化企業的重要基礎裝備,它的發展一直備受制造業的關注,其設計、制造和應用的水平在某種程度上代表了一個國家的制造業水平和競爭力。近年來,國內機床設備和技術的發展在市場需求旺盛的情況下,設備以滿足市場和用戶需求為主,在高性能加工的設備和技術上并沒有進行很好的研究和技術儲備,在市場趨于平穩的時期,我國的機床工業勢必會更加缺乏競爭力。因此,國家將數控機床作為重點支持的產業項目,在發展規劃中明確了發展高速、高精度數控加工設備作為主要的支持發展方向,將提升裝備水平和核心技術放在重要的位置。
“機床是裝備制造業的工作母機,實現裝備制造業的現代化,取決于我國的機床發展水平。振興裝備制造業,首先要振興機床工業,要大力發展國產數控機床”。振興裝備制造業,機床工業需先行,這是一條經濟發展的客觀規律。在國民經濟快速發展的拉動和國家產業政策的正確引導下,中國機床工業行業發展迅速,產銷兩旺,行業綜合水平落后的面貌得到改變。進入21世紀以來,隨著我國國民經濟實力的快速增長,我國制造業在國際上的地位日益提高。目前,我國正處在工業化的中期階段,制造業仍然是國民經濟的主體和支柱。但從總體上看,我國制造業與先進國家的差距還比較明顯。有人坦言:“無論今后科學技術怎樣進步,發展先進的制造業將是人類社會永恒的主題,制造業也將永遠是人類社會的‘首席產業’。”在當今世界上,高度發達的制造業和先進的制造技術已經成為衡量一個國家綜合經濟實力和科技水平的最重要標志。制造業最重要的基礎是裝備制造業。現在我國已是制造業大國,但并不是制造業強國。目前我國的裝備制造業水平有限,以至于不能很好地滿足現代化機械生產的需要。而現代制造業發展的主要方向體現在信息化制造方面,其中自動化、智能化制造則是裝備制造業中的主導技術,這對于高速、高精度、低消耗的產品制造來說尤為重要。
數控機床是近展起來的具有廣闊發展前景的新型自動化機床,是高度機電一體化的產品。隨著科學技術的發展,機械產品的結構越來越合理,其性能精度和效率日趨提高,因此對加工機械產品零部件生產設備――機床也相應提出了高性能高精度與高自動化的要求。大批量的產品,如汽車拖拉機與家用電器的零件,以及航空航天、內燃機、軍工、汽車、船舶等行業需要的重要加工設備,尤其是高剛性、高精度、高穩定性、高復合型的精密數控臥式銑鏜床更是航天和軍工企業急需的關鍵設備。
“十一五”期間,國家對裝備制造業提出要求:變“制造大國”成為“制造強國”,調整產業結構,重點開發高檔數控機床,提升行業水平。自主開發高速精密臥式機床,研究其相關的設計和制造技術并取得突破,對國家在高端裝備領域擁有自主知識產權和核心競爭力,將起到至關重要的影響。隨著工業技術的發展,各行各業對高速數控機床的需求也越來越多。2010年9月8日國務院召開常務會議審議并原則通過《國務院關于加快培育和發展戰略性新興產業的決定》,高端裝備制造、節能環保、新一代信息技術、生物、新能源、新材料和新能源汽車七個產業作為重點領域將集中力量加快推進,國家將加強財稅金融等政策扶持力度。國務院發展研究中心產業部部長馮飛預計,未來十年將是戰略性新興產業蓬勃發展的十年,到2020年,戰略性新興產業占工業增加值比重可望達到20%以上。機床工業由于技術含量和工藝要求極高,屬于技術和資本密集型產業,行業壁壘很高,無論在國內還是全球范圍,行業格局變化都比較緩慢。機床本屬于機械行業,而機械行業與下游行業固定資產投資密切相關。下游行業每年固定資產投資中,約60%用于購買機械產品。設備工器具購置在固定資產投資中的比例保持在20%左右,并長期保持穩定。因此在機床行業下游產業中,固定資產投資的主要部分都是用來購買裝備制造工具――機床。通過統計發現,機床下游行業固定資產投資增速遠快于全社會平均增速水平。數控機床的需求來自于下游的機械行業固定資產投資,2011年汽車及零部件、航空航天設備、高速列車、軍工、電子信息、電力設備、船舶、工程機械、模具等高端裝備業崛起,行業產能高速擴張,繼續帶動數控機床消費的高速增長。羅百輝表示,2011年高端裝備自主創新勢頭將更為強勁,繼續帶動機械工業15%以上的增速。目前我國正處于重化工業化時期,這是超脫于經濟短期波動、在近幾十年里對中國經濟產生巨大影響的因素,對我國機械工業的發展也起著促進作用。它與長期向好的中國宏觀經濟一樣,成為機械工業近30年來持續快速發展的最好注解。所謂重化工業化時期,也就是工業化的中期,即從解決短缺為主的開放逐步向建設經濟強國轉變,煤炭、汽車、鋼鐵、房地產、建材、機械、電子、化工等一批以重工業為基礎的高增長行業發展勢頭強勁,構成了對機床市場尤其是數控機床的巨大需求。中國已經超過德國,成為世界第一大機床市場。數控機床已成為機床消費的主流。預計2015年數控機床消費將超過60億美元,臺數將超過10萬臺。數控系統的發展趨勢是:①平臺數字化。②運行高速化。③加工高精化。④功能復合化。⑤控制智能化。⑥伺服驅動高性能控制。中高檔數控機床的比例會大幅增加,經濟型數控機床的比例不會有太大變化,而非數控的普通機床的需求將會大幅度減少。
參考文獻:
[1]張江華.TK7640數控銑鏜床的運動誤差分析及其補償(碩士論文),2007.
[2]暢越星.數控落地銑鏜床主軸箱動力學分析與結構設計研究(碩士論文),2007.
[3]李軍華,數控機床主傳動齒輪綜合嚙合剛度研究(碩士論文),2007.
[4]張利平主編.液壓氣動技術速查手冊.北京,化學工業出版社,2006.
[5]姚銀歌.大型數控落地銑鏜床CAE與主軸箱優化設計研究及應用(碩士論文),2010.
[6]姜華.高速精密臥式加工中心開發的關鍵技術研究(博士論文),2007.
篇9
關鍵詞:數控機床故障維修
由于數控機床具有先進性、復雜性和高智能化的特點,特別是近幾年數控系統不斷更新換代,數控機床被廣泛應用于機械制造業,給傳統制造業帶來巨大的變化,使制造業成為工業化的領頭軍。數控機床是一種典型而復雜的機電一體化產品,種類繁多,形式多樣,通常是集機械、電氣、液壓、氣動等于一體的加工設備,其中任何一部分出現故障,都可能使機床停機,從而造成生產停頓,給企業的正常生產帶來較大的影響。因此,提高數控機床維修人員的素質和能力,就顯得十分重要。本文介紹了數控機床故障診斷與維修的一些原則和常用方法。
一、故障診斷的一般原則
數控機床主要由主機CNC裝置、PMC可編程控制器、主軸驅動單元、進給伺服驅動單元、顯示裝置、操作面板、輔助控制裝置、通信裝置等組成。故障原因不外乎是操作錯誤、參數錯誤、外界環境及電源造成的故障、線路故障、器件損壞等。通常的故障診斷原則有:(1)先靜后動。先在機床斷電的靜止狀態下,通過觀察測量,分析確定為非破壞性故障后,方可給機床送電。論文參考網。在工作狀態下,進行動態的的觀察、檢驗和測試,查找故障點。而對破壞性故障,必須先排除危險后,方可送電。(2)先機后電。一般來說,機械故障較易察覺,而數控系統故障的診斷難度較大,先排除機械性故障,往往可以達到事半功倍的效果。(3)先外后內。根據機床故障原因調查統計,80%以上來自于外部原因,只有不到20%是內部原因引起的。因此維修人員應由外向內進行排查,盡量避免隨意啟封、拆卸,否則可能會擴大故障,使機床精度減弱,降低性能。(4)先簡后繁。當出現多種故障互相交織掩蓋,一時無從下手時,應先解決容易的問題,后解決難度較大的問題。如果是功能性的故障,就應先從執行元件入手,看看氣缸、電磁閥、電機、接觸器等,是否存在卡滯等性能下降現象;然后是傳感器、行程開關等輸入信號元件;再次是電氣接頭、插件、活動的電線電纜等部位。這些外部元件受環境因素影響較大,比如磕碰、腐蝕、積塵等。還有元件本身的不良和機械磨損等原因,都決定了它們常是故障的根源。通常,簡單問題解決后,難度大的問題也就變得容易了。
二、故障診斷與完善方法
2.1常規檢測法是通過觀察或借助簡單的工具確定機床故障的方法。這種方法應先弄清楚故障的癥狀,有何特征及伴隨情況,將故障范圍縮小到一個模塊或一塊印刷電路板。它可以簡單地歸納為4個字:“問,看,嗅,摸”。問,就是調查情況,在診斷故障前,修理人員詢問操作手故障發生前的機床運轉情況,產生在哪道程序及時間,操作方式是否得當等;看,就是觀察,仔細檢查有無保險絲燒斷,元器件有無燒焦或開裂等情況;嗅,就是從機床散發出的某些特殊氣味來判斷,如某些元件燒焦的氣味;摸,就是用手觸試可能產生故障的溫度、振動情況,以及元器件有無松動等。
2.2測量比較診斷法數控機床的生產廠家為了調整、維修機床的便利,在印刷電路板上往往設計了多個檢測用的端子。用戶也可利用這些端子,將懷疑有故障的印刷電路板同正常電路板進行比較。通過測量這些端子的電壓與波形,可以分析故障的具體部位與原因。維修人員如果能在機床正常狀態時,留心記錄這些印刷電路板的測量端子,或一些關鍵部位的電壓值和波形,在機床出現故障時,查找故障部位及原因將會更加方便。
2.3自診斷法現代數控系統具有很強的自診斷能力,當數控系統一旦出現故障,借助系統的診斷功能,可以迅速、準確地查明原因,并確定故障部位。
三、舉例說明常見非機械故障和排除方法
3.1北京第一機床廠生產的XK5040數控立銑,數控系統為FANUC-3MA1.故障現象驅動Z軸時就產生31號報警。2.檢查分析查維修手冊,31號報警為誤差寄存器的內容大于規定值。論文參考網。根據31號報警指示,將31號機床參數的內容由2000改為5000,與X、Y軸的機床參數相同,然后用手輪驅動Z軸,31號報警消除,但又產生了32號報警為:Z軸誤差寄存器的內容超過±32767式數模交換器的命令值超出了-8192~+8191的范圍。將參數改為3333后,32號報警消除,31號報警又出現。反復修改機床參數,故障均不能排除。為診斷Z軸位置控制單元是否出現了故障,將800,801,802診斷號調出,實現800在-1與-2之間變化,801在+1與-1之間變化,802卻為0,沒有任何變化,這說明Z軸、Y軸的位置信號控制進行交換,即用Y軸控制信號去控制Z軸,用Z軸去控制Y軸,Y軸就產生31號報警(實際是Z軸報警)。論文參考網。同時,診斷號8012為“0”,802有了變化。通過這樣交換,再次說明Z軸位置控制單元有問題,這樣就將故障定位在Z軸伺服電動機上。打開Z軸伺服電動機,發現位置編碼器與電動機之間的十字聯絡塊脫落,致使電動機在工作中無反饋信號而產生上述故障報警。3.故障處理將十字聯絡塊與伺服電動機位置編碼器重新連接好,故障排除。
3.2一臺加工中心配量FANUC-6M1.故障現象機床在自動方式中出現416號報警。2.故障分析按下列順序檢查:脈沖編碼器未出現不良;各連接器均牢固連接;X軸卯制線路板未出現異常;用萬用表測量電動機連接線,也未發現問題。在重新啟動機床,回零之后,用自動方式運轉,機床正常但1H后又出現416號報警,再次按上述順序復查一遍,發現反饋信號有一根已斷,換按備用線后,機床正常,報警不再出現。
四、結論
因此,對維修人員來說,熟悉系統的自診斷功能是十分重要。包括開機自診斷和運行自診斷。開機自診斷,就是數控系統通電后,系統自診斷軟件會對系統最關鍵的硬件和控制軟件檢查,如CPU、RAM、ROM等芯片,I/O口及監控軟件。如果正常,將進人正常操作界面,如檢測不通過,即在液晶上顯示報警信息或報警號,指出哪個部分發生了故障,將故障原因定位在一定的范圍內,然后通過維修手冊找出造成故障的真正原因,根據書上的說明進行排除;運行自診斷,
參考文獻:
[1] 任麗華. 數控機床常見電氣故障的診斷方法[J]黑龍江紡織, 2006, (01) .
[2] 李玉琴, 潘祖聰, 劉琳嬌. 數控機床常見故障診斷方法及實例[J]. 安徽水利水電職業技術學院學報, 2010, (01) :76-78
[3] 薛福連. 數控機床故障診斷及處理[J]. 設備管理與維修, 2010, (04) :23
[4] 馮華勇. 數控機床的電氣維修與故障的排除[J]四川工程職業技術學院學報, 2007, (06) .
篇10
關鍵詞:普通機床 數控改造 結構設計 精度 鄭州論文 開題報告
一、課題概述、背景及意義
工業發達國家的軍、民機械工業,在70年代末、80年代初已開始大規模應用數控機床。其本質是,采用信息技術對傳統產業(包括軍、民機械工業)進行技術改造。除在制造過程中采用數控機床、fmc、fms外,還包括在產品開發中推行cad、cae、cam、虛擬制造以及在生產管理中推行mis(管理信息系統)、cims等等。以及在其生產的產品中增加信息技術,包括人工智能等的含量。由于采用信息技術對國外軍、民機械工業進行深入改造(稱之為信息化),最終使得他們的產品在國際軍品和民品的市場上競爭力大為增強。而我們在信息技術改造傳統產業方面比發達國家約落后20年。如我國機床擁有量中,數控機床的比重(數控化率)到1995年只有1.9%,而日本在1994年已達20.8%,因此每年都有大量機電產品進口。這也就從宏觀上說明了機床數控化改造的必要性。
微觀上看,數控機床比傳統機床有以下突出的優越性,而且這些優越性均來自數控系統所包含的計算機的威力。① 可以加工出傳統機床加工不出來的曲線、曲面等復雜的零件。由于計算機有高超的運算能力,可以瞬時準確地計算出每個坐標軸瞬時應該運動的運動量,因此可以復合成復雜的曲線或曲面。 ②可以實現加工的自動化,而且是柔性自動化,從而效率可比傳統機床提高3~7倍。③ 加工零件的精度高,尺寸分散度小,使裝配容易,不再需要“修配”。④ 可實現多工序的集中,減少零件在機床間的頻繁搬運。⑤ 擁有自動報警、自動監控、自動補償等多種自律功能,因而可實現長時間無人看管加工。由以上五條派生的好處如:降低了工人的勞動強度,節省了勞動力(一個人可以看管多臺機床),減少了工裝,縮短了新產品試制周期和生產周期,可對市場需求作出快速反應等等。此外,機床數控化還是推行fmc(柔性制造單元)、fms(柔性制造系統)以及cims計算機集成制造系統)等企業信息化改造的基礎。數控技術已經成為制造業自動化的核心技術和基礎技術。
機床的數控改造,主要是對原有機床的結構進行創造性的設計,最終使機床達到比較理想的狀態。機床數控化改造有以下優點:①節省資金。機床的數控改造同購置新機床相比一般可節省60%左右的費用,大型及特殊設備尤為明顯。一般大型機床改造只需花新機床購置費的1/3。即使將原機床的結構進行徹底改造升級也只需花費購買新機床60%的費用,并可以利用現有地基。②性能穩定可靠。因原機床各基礎件經過長期時效,幾乎不會產生應力變形而影響精度。③提高生產效率。機床經數控改造后即可實現加工的自動化效率可比傳統機床提高 3至5倍。對復雜零件而言難度越高功效提高得越多。且可以不用或少用工裝,不僅節約了費用而且可以縮短生產準備周期。
在美國、日本和德國等發達國家,它們的機床改造作為新的經濟增長行業,生意盎然,正處在黃金時代。由于機床以及技術的不斷進步,機床改造是個"永恒"的課題。我國的機床改造業,也從老的行業進入到以數控技術為主的新的行業。在美國、日本、德國,用數控技術改造機床和生產線具有廣闊的市場,已形成了機床和生產線數控改造的新的行業。
目前機床數控化改造的市場在我國還有很大的發展空間,現在我國機床數控化率不到3%。我國大量的普通機床應用于生產第一線,用普通機床加工出來的產品普遍存在質量差、品種少、檔次低、成本高、供貨期長,從而在國際、國內市場上缺乏競爭力,直接影響一個企業的產品、市場、效益,影響企業的生存和發展,數控機床則綜合了數控技術、微電子技術、自動檢測技術等先進技術,最適宜加工小批量、高精度、形狀復雜、生產周期要求短的零件。當變更加工對象時只需要換零件加工程序,無需對機床作任何調整,因此能很好地滿足產品頻繁變化的加工要求,所以必須大力提高機床的數控化率。數控機床的發展,一方面是全功能、高性能;另一方面是簡單實用的經濟型數控機床,具有自動加工的基本功能,操作維修方便。經濟型數控系統通常用的是開環步進控制系統,功率步進電機為驅動元件,無檢測反饋機構,系統的定位精度一般可達±0.01,已能滿足加工零件的精度要求。這幾年,國家加大了對這類機床的改造力度,國防科工委更是推行了萬臺機床數控化計劃,車床、銑床的數控化改造需求量很大。本課題以普通車床的數控改造為例,研究機床數控改造的方法,包括其結構的改造設計,機床改造后性能與精度的分析以及控制精度的措施等,普通車床應用微機控制系統進行改造數控改造后,可以提高工藝水平和產品質量,減輕操作者的勞動強度。基于上述分析,本課題的研究具有較高的現實意義。
二、主要研究內容
1.普通車床數控改造方案的確定,進行總體設計。
2.對普通車床數控改造進行結構設計與計算,包括主軸進給系統設計、機床縱、橫進給伺服系統的設計等。
3. 對改造后的經濟型數控車床伺服進給系統建立控制原理模型。
4. 根據進給系統的控制原理模型,對影響伺服系統系統的因素進行分析。
5. 對影響伺服傳動精度的因素齒輪傳動精度、滾珠絲杠副傳動精度等進行深入研究,并提出相應的改進方法。
6. 對影響伺服元件伺服精度的因素步進電機步矩角精度等進行深入研究,并提出相應的改進方法。
三、擬解決的關鍵問題
1. 普通車床數控改造進給伺服系統機械部分的設計與計算。
2. 對經濟型數控車床伺服進給系統建立控制原理模型。
3. 根據進給系統的控制模型,分析系統的誤差來源及影響系統精度的因素。
4. 設計步進電機細分驅動電路,提高伺服進給系統的控制精度。
四、擬解決方案及關鍵技術
1. 普通車床數控改造進給伺服系統機械部分的設計與計算內容包括:確定系統的負載,運動部件慣量計算,步進電機的選擇,滾珠絲杠副的選擇和計算、滾珠絲杠副的剛度驗算等。
2. 對改造后的經濟型數控車床伺服進給系統建立控制原理模型。
3. 根據伺服進給系統控制原理模型,分別對伺服驅動元件的伺服精度、伺服機械傳動元件傳動精度進行分析,分析影響經濟型數控車床定位精度主要因素。
4. 在伺服進給系統控制電路中加入步進電機細分驅動設計,改善步矩角特性,提高經濟型數控車床的定位精度。
五、創新點
1. 運用機電一體化系統設計思路與方法進行普通車床數控改造的結構設計,在設計上達到有高的靜動態剛度;運動副之間的摩擦系數小,傳動無間隙;便于操作和維修。
2. 從經濟型數控車床的控制原理模型分析影響整個系統精度的關鍵因素,分析影響機床機床定位精度的各項誤差來源,提出相應的改進方法并應用于機床結構設計中。
3. 運用步進電機細分驅動技術,設計基于單片機控制的步進電機的細分驅動電路,減小步進電機的步距角及機床的脈沖當量,提高經濟型數控車床的加工精度,改善電機運行的平穩性,減小噪聲,增加控制的靈活性。
六、課題預計目標
1.普通車床數控改造的方案的研究,進行總體設計。
2. 對經濟型數控車床的伺服進給系統建立控制原理模型,并根據進給系統的控制原理模型,對影響系統精度的關鍵因素進行分析。
3. 研究提高機械傳動部件的傳動精度與剛度的方法,對普通車床數控改造進行結構設計,改善伺服進給系統的伺服特性。
4. 設計一種基于單片機控制的步進電機的細分驅動電路,提高伺服進給系統的分辨率。
七、課題研究進展計劃
預計本課題研究進展主要分以下幾個階段:
1. 2007年11月~2007年12月 查看文獻資料并撰寫開題報告
2. 2007年12月~2008年03月 收集相關方面的資料,以普通車床數控改造為例進行總體設計
3. 2008年03月~2008年04月 學習機床伺服進給系統的設計等方面知識
4. 2008年04月~2008年07月 進行結構設計,繪制普通車床數控改造縱、橫向進給系統裝配圖
5. 2008年07月~2008年08月 學習機床控制精度等方面知識
6. 2008年08月~2008年09月 對機床進行精度分析
7. 2008年09月~2008年10月 研究提高機床控制精度的措施
8. 2008年11月~2008年12月 完成畢業論文
9. 2008年12月 畢業答辯
參 考 文 獻
[1] 劉躍南.機床計算機數控及其應用[m].北京:機械工業出版社,1997.
[2] 王愛玲.現代數控機床結構與設計[m].北京:兵器工業出版社,1999.
[3] 周文玉.數控加工技術基礎[m].北京:中國輕工業出版社,1999.
[4] 朱曉春.數控技術[m].北京:機械工業出版社,2003.
[5]張柱良. 數控原理與數控機床. 北京:化學工業出版社,2003.
[6]]朱正偉. 數控機床機械系統. 北京:中國勞動社會保障出版社,2004.
[7] c616車床經濟型數控改造總體方案及主要部件的設計[j],機床與液壓,1999,3:50~52.
[8] 楊祖孝.數控機床進給滾珠絲杠的選擇和計算[j],機床與液壓,1999,3:50~52.
[9] 徐樺.直線滾動導軌副的選擇程序及壽命分析[j],機械設計與制造,1999,3:3~5.
[10] 翁史烈.現代機械設備設計手冊-設計基礎[m].北京:機械工業出版社,1996.
[11] 吳宗澤.機械設計實用手冊[m].北京:化工出版社,2003.
[12] 劉曉宇.劉德平.普通機床數控化改造關鍵技術的設計與計算[j],機械設計與制造,2007,9:42~44.
[13] 唐林.c616車床的經濟型數控改造總體方案及主要零部件的設計 [j],新技術新工藝,2007,6:48~50.
[14] 南京工藝裝備制造廠 精密滾珠絲杠副說明書
[15] p.p.acarnley.stepping motors.a guid to modern theory and practice.short run press ltd,1982
[16] h.j van de straete etal: servo motor selection criterion for mechantronic application, ieee/asme trans.on mechantronics,vol.3,no.1 43~44,1998.
[17] kuo b.c.and wells b.h.microcomputer control of stepmotors.csrl report no.237,control systems research laboratory,university of hlinois,p.17,august 1976
[18] y.koren, c.c.lo. advanced controllers for feed drive [j],annals of the cirp, 1992,41 (2), 689-698.
[19] 遇天志.開放式數控工作臺開發[d].西安:西安交通大學機械學院,2002.
[20] 戴曙.數控機床進給系統設計[j],制造技術與機床,1994,10:45~49.
[21]徐杜,蔣永平,周韶勇等.全數字式步進電機連續細分方法與實現[j].微特電機,1997, 2:25~29.
[22]王宗培.步進電動機及其控制系統[m].哈爾濱:哈爾濱工業大學出版社,1984.4~5.
[23]周尊源,s m歐文斯.正弦波細分步進電機微步驅動器[j].微特電機,1997,(5):29~37.
[24]范正翹,劉進,程勝.單片機控制的步進電機綜合微步距驅動系統[j].微特電機,1996,(3):30~31.
[25] 張福榮,王鈞,李志梅.數控機床進給運動對加工精度的影響[j],機床與液壓,2006,4:92~99.
[26] 程樹康.步進電機細分控制電流的定量描述[j].電工電能新技術,1990,3:25~27.
[27] 肖本賢.步進電機微步驅動技術研究.[j].自動化與儀表,1997,5:20~23.