量子力學和量子糾纏的區別范文

時間:2023-11-17 17:46:03

導語:如何才能寫好一篇量子力學和量子糾纏的區別,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

量子力學和量子糾纏的區別

篇1

關鍵詞:量子力學 量子計算機

中圖分類號:TP39 文獻標識碼:A文章編號:1007-3973 (2010) 02-106-01

1量子力學對計算機技術發展的影響

自1646年第一臺電子計算機問世以來,其芯片發展速度日益加快。按照芯片的摩爾定律 ,其集成度在不久的將來有望達到原子分子量級。在享受計算機飛速發展帶來的種種便利的同時,我們也不得不面臨一個瓶頸問題,即根據量子力學理論,在芯片發展到微觀集成的時候,量子效應會影響甚至完全破壞芯片功能。因此,量子力學對計算機技術發展具有決定性作用。

1.1量子力學簡介

量子力學是近代自然科學的最重要的成就之一. 在量子力學的世界里,一個量子微觀體系的狀態是由一個波函數來描述的,而非由粒子的位置和動量描述,這就是它與經典力學最根本的區別。

1.2量子力學與量子計算機

量子力學的海森堡測不準原理決定了粒子的位置和動量是不能同時確定的()。當計算機芯片的密度很大時(即很小)將導致很大,電子不再被束縛,產生量子干涉效應,而這種干涉效應會完全破壞芯片的功能。為了克服量子力學對計算機發展的限制,計算機的發展方向必然和量子力學相結合,這樣不僅可以越過量子力學的障礙,而且可以開辟新的方向。

量子計算機就是以量子力學原理直接進行計算的計算機.保羅•貝尼奧夫在1981年第一次提出了制造量子計算機的理論。量子計算機的存儲和讀寫頭都以量子態存在的,這意味著存儲符號可以是0、1以及它們的疊加。

2量子計算機的優點

近年來的種種試驗表明,量子計算機的計算和分析能力都超越了經典計算機。它具有如此優越的性質正在于它的存儲讀取方式量子化。對量子計算機的原理分析可知,以下兩個個特性是令量子計算機優越性的根源所在。

2.1存儲量大、速度高

經典計算機由0或1的二進制數據位存儲數據,而量子計算機可以用自旋或者二能級態構造量子計算機中的數據位,即量子位。不同于經典計算機的在0與1之間必取其一,量子位可以是0 或者1,也可以是0和l的迭加態。

因此,量子計算機的n個量子位可以同時存儲2n個數據,遠高于經典計算機的單個存儲能力; 另一方面量子計算機可以同時進行多個讀取和計算,遠優于經典計算機的單次計算能力。量子計算機的存儲讀取特性使其具有存儲量大、讀取計算速度高的優點。

2.2可以實現量子平行態

由量子力學原理可知,如果體系的波函數不能是構成該體系的粒子的波函數的乘積,則該體系的狀態就處在一個糾纏態,即體系的粒子的狀態是相互糾纏在一起的。而量子糾纏態之間的關聯效應不受任何局域性假設限制,這使兩個處在糾纏態的粒子而言,不管它們離開有多么遙遠,對其中一個粒子進行作用,必然會同時影響到另外一個粒子.正是由于量子糾纏態之間的神奇的關聯效應, 使得量子計算機可以利用糾纏機制,實現量子平行算法,從而可以大大減少操作次數。

3量子計算機發展現狀和未來趨勢

3.1量子計算機實現的技術障礙

到目前為止,世界上還沒有真正意義上的量子計算機,它的實現還有許多技術上的問題。

量子計算機的優越性主要體現在量子迭加態的關聯效應. 然而,環境對迭加態的影響以及迭加態之間的相互作用會使這種關聯效應減弱甚至喪失,即量子力學去相干效應.因此應盡量減少環境對量子態的作用。同時,萬一由于相干效應引入了錯誤信息,必需能及時改正,這需要進一步的研究和實驗。

另一方面,量子態不能復制,使得不能把經典計算機中很完善的糾錯方法直接移植到量子計算機中來.由于量子計算機在計算過程中不能對量子態測量, 因為這種測量會改變量子態, 而且這種改變是不可恢復的,因此在糾錯方面存在很多問題。

3.2量子計算機的現狀

由于上述兩種原因,現在還無法確定未來的量子計算機究竟是什么樣的, 目前科學家門提出了幾種方案.

第一種方案是核磁共振計算機. 其原理是用自旋向上或向下表示量子位的0 和1 兩種狀態,重點在于實現自旋狀態的控制非操作,優點在于盡可能保證了量子態和環境的較好隔離。

第二種方案是離子阱計算機. 其原理是將一系列自旋為1/2 的冷離子被禁錮在線性量子勢阱里, 組成一個相對穩定的絕熱系統,重點在于由激光來實現自旋翻轉的控制非操作其優點在于極度減弱了去相干效應, 而且很容易在任意離子之間實現n 位量子門。

第三種方案是硅基半導體量子計算機. 其原理是在高純度硅中摻雜自旋為1/2的離子實現存儲信息的量子位,重點在于用絕緣物質實現量子態的隔絕,其優點在于可以利用現代高效的半導體技術。

此外還有線性光學方案, 腔量子動力學方案等.

3.3量子計算機的未來

隨著現代科學技術的發展,量子計算機也會逐漸走向現實研制和現實運用。量子計算機不但于未來的計算機產業的發展緊密相關,更重要的是它與國家的保密、電子銀行、軍事和通訊等重要領域密切相關。實現量子計算機是21 世紀科學技術的最重要的目標之一。

參考文獻:

[1]胡連榮. 速度驚人的量子計算機[J].知識就是力量

[2]付剛.“量子計算機”解密[N].中安在線-安徽日報

[3]譚華海.量子計算機研究的最新進展[J].教育部科技發展中心內刊.

篇2

關鍵詞:物理本體;物理實體;量子現象;主觀;客觀

基金項目:國家社會科學基金項目“量子概率的哲學研究”(16BZX022)

中圖分類號:N03 文獻標識碼:A 文章編號:1003-854X(2017)06-0054-06

一、引言

時間和空間是人類所有經驗的背景。除去存在的事物,時間、空間什么也不是,不存在只有一件事物的時間、空間,時空是事物之間相互關系的一個方面。

人類通過感性經驗認知的時空,稱作經驗時空;以科學原理和科學方法指導認知的時空是科學時空;牛頓時空、狹義相對論時空、廣義相對論時空、量子力學時空,是經驗時空的科學提升和科學發展,稱作物理時空①。物理時空是科學時空。描述現象實體的時空是現象時空,經驗時空、物理時空、科學時空均是現象時空。而未經觀察的“自在實體(物理本體)”所在時空,稱為“本體時空”。“本體時空”是復數的②,因此,人類實質生活在復數時空中 。作為自然人,觀察者存在于“本體時空”,實時空是人類對時空認識的簡化③。

主體、客體、觀察信號是人類認知自然的三大基本要素④。一般“現象對觀察者的主觀依賴性”有其客觀原因,體現觀察信號的自然屬性對觀察者在認知中的影響。當把現象對觀察者的主觀依賴性轉化為時空的屬性后,就可以達到客觀描述物質世界⑤。所謂客觀描述就是理論計算與經驗及科學實驗結果相符。

考慮觀察信號的客觀作用并納入時空理論的科學建構之中,客觀描述物理現象,是物理學家的重要工作。一般,哲學認知中沒有明晰“觀察信號中介作用”的客觀地位,不管“機械反映論”,還是“能動反映論”,都自動將其融入“反映論”理論體系,尤其是前者,往往容易導致主觀唯心主義的滋生。

狹義相對論用光對時,考慮了光對建立時空的貢獻;牛頓時空是對時信號速度c趨于無窮大的極限情態;考慮引力場對建立時空的影響,引力時空是彎曲的,狹義相對論的平直時空是它的局域特例。從牛頓力學到狹義相對論再到廣義相對論,時空發生了變化,但主體與描述對象的關系沒有變,主體對客體的描述是客觀的。那么是否主體對認知對象完全沒有主觀影響?如果有,它如何產生,又如何消解,實現客觀描述物質世界?經典力學中,人類的處理方法是通過揭示“現象對觀察者的主觀依賴性”及其產生機理,在不同認知領域區分描述中可以忽略的和不可忽略的,能忽略的舍棄,不能忽略的轉化成時空的屬性,實現客觀描述;而從牛頓力學(或相對論力學)到量子力學,時空沒有變化,描述對象具有波粒二象性,“量子現象的主觀依賴性”更為突出。如何消解“量子現象對觀察者的主觀依賴性”,實現量子現象的客觀描述,一直是量子力學基礎討論的熱點。量子力學必須有自己的客觀描述量子現象的時空⑥。

量子力學時空是閔氏時空的復數拓展和推廣⑦,由此可以實現客觀描述量子世界。它與相對論時空有交集,也有異域。有因必有果,反之亦然,時間與因果關系等價⑧。量子力學中的非定域性,與能量、動量量子化及量子態的突變性相關聯。突變無須時間,導致因果鏈斷裂,與因果關聯的相互作用也被刪除,由此引進了類空間隔。平行并存量子態的出現,是不遵從因果律的量子力學新表現;當能量、動量和相互作用變得連續,宏觀時序得到恢復時,回到相對論時空,量子測量中“量子態和時空的坍縮”⑨ 是不同物理時空的轉換,希爾伯特空間只是它們的共同數學應用空間⑩。

時空不是絕對的,相對時空有更廣闊的含義,人類需要擴大對時空概念的認知,不同的認知層次有不同的時空對應,復數時空更為本質。人們不應該將所有領域的物理實體歸于某一時空描述,或者用一種時空的性質去否定另一種時空的存在。還是愛因斯坦說得好:是理論告訴我們能夠觀察到什么。當然,新的實驗事實又將告訴人們,理論及其對應的時空應該如何修改和發展。理論不同時空不同,時空具有建構特征。

二、時空的哲學認知與物理學描述

時空是哲學的基本概念,也是物理學的基本概念。哲學認為,時間和空間是物質的存在形式,既不存在沒有時空的物質,也不存在沒有物質的時空。笛卡爾指出,空間是事物的廣延性,時間是事物的持續性;康德認為,時空是感性材料的先天直觀形式;牛頓提出時間和空間是彼此分離,絕對不變的,強調數學的時間自我均勻流逝;萊布尼茨說,空間是現象的共存序列,時間與運動相聯系;黑格爾認為,事物運動的本質是空間和時間的直接統一。休謨認為,時、空上的接近和先后關系與因果性直接相關。中國的“宇”和“宙”就是空間和時間概念,它是把三維空間和一維時間概念同宇宙密切聯系在一起的最早應用{11}。

哲學具有啟示作用,但時空概念如果不與人的社會實踐、科學實驗、科學理論及其數學物理方法相聯系,就只能停留在形而上,無法上升為科學理論概念。

物理學中,空間從測量和描述物體及其運動的位置、形狀、方向中抽象出來;時間則從描述物體運動的持續性、周期性,以及事件發生的順序、因果性中抽象出來;空間和時間的性質,主要從物體運動及其相互作用的各種關系和度量中表現出來。描述物體的運動,先選定參照物,并在參照物上建立一個坐標系,一般參照物被抽象成點,它就是坐標系的原點;假定被描述物體的形體結構對討論的問題(或對參照物的時空)沒有影響,將物體抽象成質點,討論質點在坐標系中的運動及其相關規律,這就是物理學。由此,“時空是物質的存在形式”的哲學認知也就轉化為人類可操作的具體物理理論描述。

可見,時空的認知與人類的社會實踐、科學實驗、科學進步直接相關,離不開物理和數學方法的應用。笛卡爾平直空間、閔可夫斯基空間、黎曼空間都已作為物理學所依托的幾何學,在牛頓力學、狹義相對論、廣義相對論中得到了充分應用。由此,幾何學被賦予了物理意義。從牛頓力學到狹義相對論再到廣義相對論,時空發生了變化,但描述對象與觀察者之間的關系沒有變,描述是客觀的,并且描述對象都可抽象成經典的粒子,采用質點模型。量子力學不同,從牛頓力學(相對論力學)到量子力學,描述量子現象的時空沒有變化{12},物理模型沒有變,但量子現象對觀察者有明顯的主觀依賴性,難以客觀描述微觀量子現象。深入分析,解決的辦法有兩種,一是更換物理模型的同時也改變物理時空,消除“量子現象對觀察者的主觀依賴性”,實現客觀描述微觀量子客體;二是改變時空的同時,保留“量子現象對觀察者的主觀依賴性”,將本體、認識、時空融為一體,主觀納入客觀,模糊主客關系。雙4維時空量子力學基礎采用了第一種方法。通過場物質球模型,把點模型隱藏的空間自由度釋放出來;在改變物理模型的同時,也改變了描述時空;將不是點的微觀客體自身的空間分布特性,轉化為描述空間的屬性,客觀描述量子客體。我們認為,第二種方法將主觀認識不加區分地“融入時空”,有損客觀性、科W性,量子力學時空必須是描述客觀世界的時空。物理時空需要建構。

三、牛頓絕對時空中“現象對觀察者的主觀依賴性”及其“消解”

眾所周知,物理學對物體運動狀態的描述,理應包含參照物和被描述物體自身的時空特征,而參照物和物體自身的時空特征,必須通過觀察發現。觀察需要觀測信號,物體運動狀態及其時空特征必然帶有觀測信號的烙印{13}。

“物理本體”不可直接觀察,我們觀察到的是“物理實體”{14}。參照物與研究對象都有自己對應的物理時空,牛頓力學時空應該是兩者的綜合,而不應該只是參照物的時空。但是,牛頓力學中光速無窮大,在討論物體運動時,又假設研究對象的時空結構對討論的問題沒有影響,忽略不計,于是,研究對象抽象成了質點,整個理論體系就只有與參照物聯系的時空了。

任何具體物體都不會是質點。當用信號去觀察它時,物體自身的時空特征與物體的運動狀態與觀察信號的性質、強弱和傳播速度相關。質點模型忽略物體自身的幾何形象及其變化,忽略運動及觀察信號對物體自身時空特征的影響,參照物也不例外。在從參照物到坐標系的抽象中,抽掉運動及觀察信號對參照物時空特性的影響,就是抽掉物體運動及觀察信號對坐標系時空特性的影響,就是抽掉人的參與對時空認知的影響{15}。牛頓力學時空與物體運動及觀察者無關,絕對不變,基于絕對不動的以太之上。所以,牛頓可以把時間和空間從物質運動中分離出來,時間和空間也彼此分割,空間絕對不變,數學的、永遠流逝的時間絕對不變{16}。哲學的時空演變成了可操作的物理時空。這是宏觀低速運動對時空的簡化與抽象,理論與宏觀經驗及計算相符。

相互作用實在論認為,現實世界是人參與的世界,對一個研究對象的觀察,離不開主體、客體、觀察信號三個基本要素。參照物和觀察對象的運動和變化及其時空屬性,與觀察信號的性質相關。牛頓力學中,不是沒有現象對觀察主體的依賴性,而是在理論的建立中認為影響很小,可以忽略不計。牛頓力學是“物理本體=物理實體”的力學{17}。這與宏觀經驗和科學實驗相符,在宏觀低速運動層次實現了主客二分,理論被看作是對客觀實在的描述。牛頓力學中,物質告訴時空如何搭建描述背景,時空告訴物質如何在背景中運動。二者構成背景相關。

牛頓時空是均勻平直時空,相對勻速運動坐標系間的變換是伽利略變換。物理定律在伽利略換下具有協變性,相對性原理成立。

四、狹義相對論中“現象對觀察者的主觀依賴性”及其“消解”

狹義相對論建立之前,洛倫茲就認為高速運動中物體長度在運動方向發生收縮{18}。這是他站在牛頓時空立場,承認以太及絕對坐標系的存在對洛倫茲變換所作的解釋。描述時空沒有變,“現象對觀察者出現了主觀依賴性”。自然現象失去了客觀性,這是一次認識危機,屬19世紀末20世紀初兩朵烏云之一。

狹義相對論不同,它考慮宏觀高速運動中觀察信號對物體時空特征的影響。愛因斯坦在“火車對時”實驗中,他用“光”作為觀察、記錄、認知物體時空特征的信號{19};通過參照物到坐標系的抽象,論證靜、動坐標系K與K′“同時性”不同,靜、動坐標系運動方向時空測量單位發生了變化;將洛倫茲所稱“運動物體自身運動方向上的長度收縮”演變成坐標系時空框架的屬性,還原質點模型,建立相對論力學。實現了觀察者對觀察對象的客觀描述。

狹義相對論中質點的動量、能量、位置和時間都有確定值,質點的運動具有確定的軌跡,這一點與牛頓力學相同。

狹義相對論時空的另一重要物理意義是揭示了“物理本體”的客觀實在性。

牛頓力學缺少相對論不可直接觀察的靜能(m0c2,m0c)對應物,物理本體=物理實體,哲學上的抽象時空直接過渡到牛頓物理時空。

狹義相對論不一樣,每一個物體都有一個不可直接觀察的靜能(m0c2,m0c)對應物,它在任何靜止參考系中都是不變量,是物理實體背后的物理本體,物理本體不變,變的是mc2、mc對應的物理實體。“物理本體”既不是形而上的(物自體),也不是形而下的(物體),是形而中的(靜能對應物)。它可以認知、可以理論建構,但又不可直接觀察。相對于牛頓,愛因斯坦相對論揭示了“物理本體”的真實存在性。“客觀物質世界”不是思維的產物。

狹義相對論中,物質告訴時空在運動方向如何修正測量單位,時空告訴物質如何長度收縮、時間減緩。時空具有相對性。

狹義相對論時空雖然也是均勻平直時空,但由于有上述“相對時空”的出現,時空度規與歐氏時空度規有明顯區別,所以稱為贗歐氏時空。

但狹義相對論仍然是只考慮光及光速的有限性對建立時空的影響,沒有考慮引力作用對建立時空的影響。如果考慮引力對時空的影響又如何呢?

五、廣義相對論中“現象對觀察者的主觀依賴性”及其“消解”

廣義相對論中有水星近日點進動問題和光走曲線的討論。站在牛頓平直時空的立場,觀察結果與理論計算不符。這不是儀器的精度不夠,也不是操作失誤,而是理論本身的問題。因為,牛頓力學也好,狹義相對論也好,討論引力問題,引力場對參照物和研究對象時空屬性的影響都沒有計入其中,而留在觀察者對“現象”的觀察、判斷之中,出現宇觀大尺度“現象對觀察者的主觀依賴性”。如果考慮引力場使時空發生彎曲,利用彎曲時空計算水星近日點進動和光走曲線現象,“現象對觀察者的主觀依賴性”就變成時空的屬性。“現象對觀察者的主觀依賴性”就得到了“消解”,觀察現象與理論結果就取得了一致。這里,物質使時空彎曲,時空告訴物質如何在彎曲時空中運動。廣義相對論實現了觀察者對觀察對象的客觀描述。

廣義相對論時空是彎曲的,時空度規是變化的。

六、量子力學中“現象對觀察者的主觀依賴性”及其“消解”

微觀客體具有波粒二象性,同一個電子,通過雙縫表現為波,而打在屏幕上又表現為粒子,電子集波和粒子于一身,“量子現象對觀察者的主觀依賴性”更為突出。經典力學中波動性和粒子性不能集物體于一身,量子力學與經典力學表現出深刻的矛盾。矛盾的產生,可能是描述微觀現象的時空出了問題。量子力學的研究領域是微觀世界,研究對象是微觀客體,不是經典的粒子,用以觀察的信號也不是連續的光,而是量子化了的光,通過光信號建立的時空應該與牛頓、相對論時空有所區別。而量子力學使用的還是牛頓時空、狹義相對論時空,時空沒有變,物理模型沒有變,而研究領域、觀察信號和研究“對象”變了。量子力學必須有自己對應的時空,將“量子現象對觀察者的主觀依賴性”,轉化為描述時空的屬性,實現客觀描述量子現象! 雙4維時空量子力學就是為實現這一目標應運而生的。

現有量子力學“量子現象對觀察者的主觀依賴性”之所以難以消解,與量子力學中的點模型相關。許多量子現象與點模型隱藏的空間自由度有直接聯系,但點模型忽略了這些自由度對產生微觀量子現象的作用和影響。我們必須將隱藏的空g自由度還原于時空,才可能正確地認識、客觀描述量子現象。

可以公認,微觀客體不是點{20},是一個有形客體,有一定的空間分布,不存在確定于某點的空間位置,這是客觀事實。理論上,牛頓時空幾何點位置是確定的,量子力學使用的是質點模型,0 維,位置也是確定的,牛頓時空可以精確描述質點的運動。那么微觀客體空間分布的不確定性如何處理?人們只好轉而認為點粒子在其“空間分布”區域位置具有概率屬性。微觀客體自身空間分布的客觀實在性在量子世界轉化成了一種主觀認知,賦予了微觀客體“內稟”的概率屬性,其運動產生概率分布,或稱其為概率波。

這是一個認識上的困惑,似乎量子力學描述失去了客觀實在性。這也是量子力學當今的困境。解決困難的方法是:(一)更換點模型,釋放點模型隱藏的自由度,展示“這些自由度對產生微觀現象的貢獻”;(二)建立適合量子力學自身的時空,將釋放的自由度植入其中,讓“量子現象對觀察者的主觀依賴性”變成量子力學時空自身的屬性。

雙4維時空量子力學的辦法是:(一)用“轉動場物質球”模型取代“質點”模型,釋放點模型隱藏的空間自由度;(二)將4維實時空M4(x)拓展到雙4維復時空W(x,k),且將“釋放的空間自由度――曲率k”作為雙4維復時空的虛部坐標;(三)4維曲率坐標將量子力學賦予微觀客體自身的概率屬性變成量子力學復時空的幾何屬性,場物質球自身的旋轉與運動產生物質波――物理波。

“場物質球”與“物質波”(類似對偶性假設)既是同一物理實在的兩種不同描述方式,更是微觀客體粒子性和波動性的統一,曲率的大小表示粒子性,曲率的變化表示波動性。場物質球的物質密度是曲率k的函數,因此,物質波既是場物質球的結構波又是場物質密度波。物質波不是傳播能量,而是傳播場物質球的結構或物質密度變化,可映射成實時空M4(x)的概率分布{21},與實驗結果相一致。

這樣,點模型中“量子現象對觀察者的主觀依賴性”通過“釋放的自由度”轉變為時空W(x,k)的屬性,物質波傳播其中,量子現象是物質波所為。

研究表明,是量子測量引入的連續作用,使雙4維時空W(x,k)全域轉換到實時空M4(x),波動形態轉變成粒子形態(“相變”),球模型轉換成點模型,概率屬性內在其中,物質波自動映射成概率波,數學處理類似表象變換{22}。

簡言之,傳統量子力學,微觀客體簡化成質點,描述時空不變,人的主觀意識介入其中,將其空間分布特性――位置不確定性,變成點粒子的概率屬性,實現描述對象從客觀到主觀認知的轉變,具有位置不確定性的點粒子,其運動產生概率波;雙4維時空量子力學,微觀客體簡化成場物質球,“空間分布具體化為幾何曲率”,空間分布特性變成曲率坐標,仍然是從客觀到客觀,描述時空變成了復時空,曲率坐標在其虛部,場物質球的運動產生物質波――物理波。通過量子測量,物質波映射成概率波,球模型演變成點模型,顯示概率屬性,時空內在自動轉換,量子現象對觀察者的主觀依賴性消解在建構的時空理論中。具體論證方法是:

將靜態場物質球寫成自旋波動形式:Ψ0=е■,描述在復空間。ω0是常數,它的變化只與自身坐標系時間t0相關,全空間分布(物理本體所在空間)。設建在“靜態”場物質球上的坐標系為K0,觀察微觀客體從靜止開始作蛩僭碩,由洛倫茲變換:

微觀客體的運動速度不同,平面波相位不同。復相空間kμxμ即為物質波所在時空。物質波是物理波。

自由微觀客體的速度就是建在其上慣性坐標系的速度,慣性系間的坐標變換,隱藏速度突變――“超光速”概念,因為,連續變化會引進引力場破壞線性空間。不同慣性系中平面波之間,相位不同,類似量子力學中的不同本征態。這是相對論中的情形{24}。

但是,量子力學建立其理論體系時,把上述不同慣性系中的平面波(不同本征態,每一本征態則對應一慣性系),通過本征態突變躍遷假設(量子分割),切斷因果聯系,形成同一時空中“同時”并存的本征態的疊加。態的躍遷不需要時間,“超光速”(非定域),將類空間隔引入量子力學時空,破壞了原有的因果關系。疊加量子態的存在,是“違背”因果律在量子力學中的新表現。

量子力學時空顯然不是牛頓、狹義相對論時空,但量子力學卻誤認為量子躍遷引起的時空性質的變化是牛頓、狹義相對論時空中的特征,這當然會帶來不可調和的認知矛盾。

同一微觀客體,不同本征態“同時”并存的物理狀態,從整體看,是洛倫茲協變性在量子力學中的新表現。突變區“超光速”,是類空空間,“不遵從”因果律;釋放光子的運動在類光空間;而本征態自身在類時空間,微觀客體運動速度不能超過光速,需保持因果律,物質波討論的就是這一部分,就像相對論討論類時空間物理一樣。量子糾纏態將涉及到上述三種不同性質物理空間量子態的轉換,有完全合理的物理機制,不需要思維的特殊作用。不過,相對論長度收縮效應,將以物質波波長在運動方向上的收縮來體現。有了雙4維時空量子力學,量子力學與相對論就是相容的,光錐圖分析一樣適用。

相對論與量子力學的不同,關鍵在于認知層次發生了變化,光由連續場演變成了量子場。而我們用來觀察世界的光信號直接與時空相關,光的物理性質的變化,必然帶來物理空間性質的變化,帶來物理模型的變化,帶來量子力學時空W(x,k)與相對論時空M4(x)之間的區別,帶來對物質波――物理波的全新認知。我們預言,物質波有通訊應用價值{25},但與量子力學非定域性無關。

《雙4維復時空量子力學基礎――量子概率的時空起源》的理論實踐表明,我們的工作是可取的{26}。結論是,量子力學中,物質告訴時空如何具有概率屬性,時空告訴物質如何作概率運動。量子現象對觀察者的主觀依賴性消解在對應的時空理論之中,實現了觀察者對量子現象的客觀描述。

雙4維時空是描述量子現象的物理時空,時空度規,無論實數部分,還是虛數部分,都是平直的{27}。

近年來,由于量子通訊技術的飛速發展,量子糾纏的物理基礎引起了人們的特別關注,波函數的物理本質,量子力學的非定域性討論十分熱烈。“量子現象對觀察者的主觀依賴性”更是討論的核心。人們甚至被量子現象的奇異性迷惑了,特別是,有科學家甚至認為:“客觀世界很有可能并不存在”。世界是人臆造出來的?科學實在論者當然不能贊成!更加深入的探討,我們將另文討論。

按照曹天予的評論,《雙4維復時空量子力學基礎――量子概率的時空起源》值得關注{28}。雙4維復時空與弦論、圈論比較,最大優點是將時空拓展、推廣到了復數空間,數學沒有那么復雜,而物理學基礎卻更加堅實、清晰。

七、結論與討論

1.“現象對觀察者的主觀依賴性”普遍存在于人與自然的關系之中,融入時空的只能是物理實體對時空有影響的部分,時空具有建構特征。

2. 物質運動與時空的關系:牛頓力學中,物質告訴時空如何搭建運動背景,時空告訴物質如何在背景上運動;狹義相對論中,物質告訴時空如何修正測量單位,時空告訴物質如何在運動方向長度收縮、時間減緩;廣義相對論中,物質告訴時空如何彎曲,時空告訴物質如何在彎曲時空中運動;量子力學中,物質告訴時空如何具有概率屬性,時空告訴物質如何作概率運動。

3. 量子力學時空是平直的,其方程是線性的,而廣義相對論時空是彎曲的,其方程是非線性的{29}。量子力學與廣義相對論的統一,不能機械地湊合,它們的統一,必須從改變時空的性質做起,建立相應的運動方程,并搭起非線性空間與線性空間的相互聯絡通道。

注釋:

① 趙國求:《雙4維時空量子力學基礎》,湖北科學技術出版社2016年版,第5頁;Cao Tian Yu, From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism, Cambridge: Cambridge University Press, 2010, pp.202-241.

② Rocher Edouard, Noumenon: Elementaryentity of a Newmechanics, J. Math. Phys., 1972, 13(12), pp.1919-1925.

③④⑥⑦⑩{13}{15}{17}{21}{22}{24}{25}{27} w國求:《雙4維時空量子力學基礎》,湖北科學技術出版社2016年版,第5、105、9、147、179、94、133―136、106、151、151、159、152、149頁。

⑤ 主觀與客觀:“客觀”,觀察者外在于被觀察事物;“主觀”,觀察者參與到被觀察事物當中。 辯證唯物主義認為主觀和客觀是對立的統一,客觀不依賴于主觀而獨立存在,主觀能動地反映客觀。

⑧ L?斯莫林:《通向量子引力的三條途徑》,李新洲等譯,上海科學技術出版社2003年版,第29―33頁。

⑨ 張永德:《量子菜根譚》,清華大學出版社2012年版,第29頁;趙國求:《雙4維時空量子力學基礎》,湖北科學技術出版社2016年版,第178頁。

{11} 馮契:《哲學大辭典》,上海辭書出版社2001年版,第1579―1582頁。

{12} 參見L?斯莫林:《物理學的困惑》,李泳譯,湖南科學技術出版社2008年版。

{14} 相互作用實在論中的基本概念:(1)物質:外在世界的本原。(2)基本相互作用:遍指自然力,有引力,電磁、強、弱等力。(3)自在實體:指未經觀察的“自然客體”(相互作用實在論中,自在實體作為物理研究對象時稱物理本體)。(4)現象實體:經過觀察,系統的、穩定的、深刻反映事物本質的理性認知物。現象則表現自在實體非本質的一面。(相互作用實在論中,現象實體作為物理研究對象時稱物理實體)。(5)觀測信號:人類認知世界使用的探測信號。

{16} 參見伊?牛頓:《自然哲學之數學原理宇宙體系》,武漢出版社1996年版。

{18} 參見倪光炯等:《近代物理學》,上海科學技術出版社1980年版。

{19} 參見A?愛因斯坦:《相對論的意義》,科學出版社1979年版;愛因斯坦等:《物理學的進化》,周肇威譯,上海科學技術出版社1964年版。

{20} 坂田昌一:《坂田昌一科學哲學論文集》,安度譯,知識出版社2001年版,第140頁。

{23} 參見Guo Qiu Zhao, Describe Quantum Mechanics in Dual 4d Complex Space-Time and the Ontological Basis of Wave Function, Journal of Modern Physics, 2014, 5(16), p.1684;趙國求:《雙4維時空量子力學基礎》,湖北科學技術出版社2016年版,第149頁。

{26} 參見Guo Qiu Zhao, Describe Quantum Mechanics in Dual 4d Complex Space-Time and the Ontological Basis of Wave Function, Journal of Modern Physics, 2014, 5(16), p.1684;趙國求:《雙4維時空量子力學描述》,

《現代物理》2013年第5期;趙國求、李康、吳國林:《量子力學曲率詮釋論綱》,《武漢理工大學學報》(社會科學版)2013年第1期。

{28} 曹天予:《當代科學哲學中的庫恩挑戰》,《中國社會科學報》2016年5月31日。

篇3

【關鍵詞】自主論/還原論/生命現象/解釋/遺傳信息

【正文】

1.目的性解釋或功能解釋的方式是概念自主性的邏輯延伸

如果承認生物學理論具有自主性,那么理論自主性的根本在于概念的自主性,即存在所謂不能用物理——化學術語進行描述和定義的概念。生物學理論自主性的另一表現——理論體系的目的性解釋或功能解釋方式,是概念自主性的邏輯延伸。另一方面,生物學理論中僅存在自主性概念并不必然導致目的性解釋或功能解釋,例如,孟德爾遺傳學、公里化處理后的群體遺傳學和進化論的演繹體系(1),其中所有的概念都沒有與物理——化學發生關聯,都是自主的,只有在一個體系中,例如,以分子生物學為主體的現代生物學,存在自主性概念的同時,又存在物理——化學的術語和概念,并且,二者都處于解釋起點的位置,才必然導致目的性解釋或功能解釋的理論結構,這種結構成為融合自主性概念與物理——化學概念為一體的方案。就現代分子生物學來說,其中的物理——化學概念所描述的是生命現象中的分子及其行為,而自主性概念所描述和推演的是我們宏觀經驗的生命現象本身,這二者之間,從概念的構造和體系的建立的過程來說,分屬兩套邏輯體系,因而它們之間沒有邏輯演繹的導出關系(2),同時,由于生命現象的復雜性(即使假定把它描述成所謂的因果反饋網絡是可行的方案),難于形成一個由前者到后者的歷史演化的因果決定性的理論描述,剩下來將二者結合在一個理論中的唯一方案就是目的性解釋或功能性解釋的方式。由此形成的體系中,自主性概念(如遺傳信息)處于核心地位,物理——化學的術語和概念(如DNA,蛋白質)是附屬的。現代還原論(或稱分支論,企圖將生物學作為物理科學的一個分支)對生物學理論的目的性解釋或功能解釋方式的一切責難,以及將其變換為演繹解釋方式的企圖,如果不首先化解概念的自主性問題,將是徒勞的。

從生物學理論的客觀構建過程來說,這些“自主性概念”是直接從生命現象中認定的,因而也是無機世界所沒有的。在自主論看來,無論站在什么角度或立場上,“自主性概念”是理論中不可再分解的最基本,最原始的元素,是解說其它現象的起點;而在還原論看來,從物理——化學的立場或從無機界與生命界的關系的角度來看,“自主性概念”是復合的,應由物理——化學的術語和概念復合而成,因而它們就不應是理論中最基本的元素。我們順著還原論的思路思考下去,還原,就是最終由物理學中的概念邏輯地演繹“自主性概念”的內涵。物理學中所有概念都終究歸結為可感知、可操作的三個量綱:質量、空間、時間。物理科學內部的還原都是這種歸結:對熱質的否定并把熱現象歸結為能、溫度歸結為分子的平均動能,從化學到量子力學等等,著名的“熵”,則以熱量與溫度的關系來表示,在申農創立了信息論之后,人們便千方百計地尋找“信息”與物理學的關系,勉強將其與“熵”聯系起來。從有限的意義上說,分子生物學還原了經典遺傳學,將基因還原為DNA和“遺傳信息”,而“遺傳信息”如何進一步歸結為物理學的量綱呢?“遺傳信息”是一系列生命過程的整體賦予DNA等生物大分子行為以生物學意義的概念,也就是說在解釋的邏輯次序上整體在先,元素在后,這是“遺傳信息”這一概念的自主性的來源。因此,分子生物學的還原僅是有限意義上的還原,甚至不能說是還原,因為它僅僅是以一個自主性概念(遺傳信息)解說了另一個自主性概念(基因),而“遺傳信息”已成為現代生物學的研究范式或綱領的核心。因此,現代分子生物學并沒有給還原論以支持,而且具有反作用,因為,如果說經典遺傳學是一個演繹體系因而在這一點符合還原論的要求,那么分子生物學由于“自主性概念”與物理——化學概念的混合而具有了目的性解釋和功能解釋框架的特征,這成為生物學理論自主性的表現特征之一。

現代自主論正是從分子生物學的這些自主性特征出發,聲明了自己的原則和立場。

2.現代自主論的原則及其本體論基礎

從活生生的生命現象中直接認定一些概念,從而它們獨立于無機界,有別于物理——化學語言,使建立在這樣的概念之上的理論具有自主性,最極端的例子是本世紀初的生理學家杜里舒(H·Driesch)將“活力”概念科學化和理論化,使它成為邏輯解釋的起點;孟德爾到摩爾根所構造的經典遺傳學中的“基因”,也是直接以生命現象以及從中所獲得的數據為根據認定的有別于物理——化學的概念。本世紀六十年代,分子遺傳學將“基因”用DNA分子片段代替,使人們一度認為生物學的自主性是一種虛幻的認識,遲早會消失的。但是,并非DNA分子片段唯一地代替了基因,而是DNA分子與“遺傳信息”二者一起來解釋基因。“遺傳信息”又是直接來源于生命現象的概念,僅就這一點來說,分子生物學仍然具有自主性。這是現代生物學自主論的根據。

現代自主論的主要論點是生物學完全有根據形成自主的概念,“自主”意味著不能由物理——化學術語來分解或描述或定義。為了區別于分子生物學誕生之前的生機論或活力論,現代自主論提出以下原則:將生物學能否還原為物理科學與能否用物質原因闡釋生命現象嚴格區分為兩個問題。(3)這個原則所要強調的是,物理——化學并不是對物質世界的唯一表述方式,關于生命有機體自身的物質原因的表述(生物學理論)則是另一種關于物質世界的理論表述方式,二者之間不存在邏輯蘊涵或邏輯導出關系。生物學還原為物理科學,其嚴格意義是以物理——化學的概念和定律來解釋生命現象,從而推演生物學理論。僅從概念的層次來說,完全用物理——化學的術語描述或定義生物學概念,已經非常苛刻而至今遠未做到。現代自主論“用物質的原因闡釋生命現象”則寬松得多,實際上,分子生物學就是這樣,以生命大分子組成,再加上遺傳信息、復制、轉錄、翻譯以及選擇、穩定等諸多生物學獨有的自主性概念,成功地闡釋了從功能到進化的許多生命現象和活動。這是一個非常實際的原則,既可以擺脫科學史上令人厭惡的“活力”糾纏,又沒有象還原論那樣自套枷鎖。

雖然如此,如果深究這一原則,則存在以下問題:

第一,現代自主論所稱的具有自主性的生物學概念的認知來源無疑仍是對生命現象的直接認定,因此,在還原論或分支論那里應該是純粹的解釋對象的生命現象,在此成為認知和解釋的起點。至少在這一點上與“活力”概念是相同的;

第二,現代自主論的本意是,生命現象中的物質運動方式為無機界所沒有,因而對這些運動方式、關系等可形成獨立于或自主于描述無機界物質運動方式的物理——化學的術語、概念乃至規律、理論,作為解說生命現象的前提。這種主張或可與當下的生命現象或“功能生物學”(4)相諧調,但與科學界的一個基本承諾(也是一個從未被證實過的預設)相抵觸:生命來自于無機界。這意味著生命現象中的運動方式與無機界的運動方式有—個邏輯與歷史相統一的關系,描述它們的理論也應有一個統一的邏輯關系,因而自主性不應該是必然的。

第三,在解釋上,“物質的原因”中的“物質”是指生命體組成,主要是生物大分子,因此在現代自主論看來,分子生物學在具有了自主性的同時,又具有了物質性。而具體體現這種主張的分子生物學必然是自主性概念與物理——化學的術語和概念相“混合”的理論,其中,直接以生命現象作為實在性基礎的自主性概念占有主導地位,是理論的核心。“遺傳信息”規定了未來的藍圖,成為生物大分子所有行為的目的性基礎與源泉,(5)它以生物大分子自身的邏輯內涵所沒有包容的、因而是外在的東西,來賦予生物大分子行為以生物學意義。這就使得DNA等生物大分子成為遺傳信息等概念的附庸,導致了目的性解釋或功能解釋方式(2)。這實際上僅僅一半是物質的,而另一半卻仍舊是“生機”的。這樣,與其說是解釋生命現象,不如說是在闡釋生命形式下的分子及行為。這樣的理論之所以被人們接受,其原因之一是人們接受了“生命來自于無機界”這個科學界中最基本的承諾之一,它已成為一種指導思想,給人們帶來了希望:遲早有一天我們可以使理論上的從無機到生命的邏輯與歷史上的從無機到生命的演化過程統一起來。因此,現代自主論的原則盡管與現代生物學相一致,但是,它卻與這樣一個重大的承諾不諧調。

第四,由此,我們可以做這樣的一個回顧:生機論以從生命現象中認定的概念作為解釋的起點,可簡略稱為“以‘生命’解釋生命”;還原論則基于近現代科學精神的要求,以描述無機界的概念為起點來解釋生命現象(即“以‘物質’解釋生命”);而現代自主論的原則和主張,在分子生物學的具體體現中,卻付出了這樣的代價:以自主性概念為核心規范了物理——化學的術語和概念,以此為解釋起點,但所解釋的并非是生命現象本身,而是分子的行為(盡管是生命形式之下的)——自主性的那部分所解釋的是生物大分子的(物質的)行為(即“以‘生命’解釋物質”),“物質原因”那部分所解釋的也仍是物質,而非生命。

以上幾點,既是現代分子生物學理論體系中存在的哲學疑難,又是現代自主論的主張所存在的問題。現代自主論的原則是以現代生物學為其合理性依據的,它之所以堅持這一原則,一方面是由于現代分子生物學的內容的確如此,另一方面又企圖把這一原則固定為今后理論生物學構建的指導性原則。這不由得使人想起了二千多年前亞里士多德的技巧,他不滿意柏拉圖在靈魂(生命)與肉體(物質)之間設置的鴻溝,企圖找出生命過程與物理過程的密切聯系,同時又要界說生命過程以表明與物理過程的區別,他構造了“形式因”和“目的因”的概念來解決這一問題:一件東西賴以構成的原料或物質并沒有告訴我們它是什么,但賦予它以形式或目的,我們就可以根據它能做什么來說明它。

進一步的問題是本體論問題。現代自主論的優勢在于現代生物學理論的形態和內容確以一些自主的概念作為理論根基的,但它的本體論基礎卻不令人信服:“生物學自主性的本體論根據在于生命有機體這種體系中的因果關系是復雜的,其中,生命整體行為對部分的制約是無機界所沒有的。”(3)在此,存在著這樣的悖論:因果關系是對現代生物學自主性的否定,而這里卻以因果關系(盡管是復雜的,但仍是因果關系)作為自主性的本體論基礎——前文分析了“一個理論體系中自主性概念與物理——化學概念同存并列作為解釋的最基本元素,必然導致目的性解釋或功能解釋的方式”,它的逆否命題便是“非目的性解釋(演繹的或因果關系的)體系不允許兩種概念混合并列為解釋的起點”,只能由一方還原另一方。那么,理論出現了“自主性”,到底是由于生命現象太復雜、純粹以無機界為起點因果地或演繹地解釋生命現象太困難而采取的權宜之計;還是由于存在著無機界所沒有的“制約”,因而生命現象在本體上具有“自主性”(自主于無機界、確切地說自主于物理——化學的運動機制),使生物學也具有了“自主性”?接下來就發生這樣的重大問題:本體上的自主性是什么?它與“活力”“生命力”的本質區別是什么?現代自主論可以爭辯:生物學理論的自主性并不等同于生命現象具有自主性。但是,“整體對部分的制約”等諸如此類的現象如果在本體上不是自主的,而是與無機界有演化機制的因果關聯,又為何不能為物理——化學(包括未來的物理科學)所描述?除非承認“科學的認識方法是有限的和不完備的”以及進一步承認“人的認知能力是極為有限的”這樣令人氣餒的命題,這又回到了“太困難而采取的權宜之計”上來。

因此,現代還原論固執地堅持以下兩點與現代自主論的原則以及生物學理論現實作對:第一,生命必須純粹地作為解釋對象,而不能在解釋之先從生命現象中預設某些概念作為解釋的起點,如果生物學理論中有這樣的概念,則它應被分解為物理——化學的語言;由此,第二,用演繹的解釋方式轉換由于存在自主性概念而采用的目的性解釋或功能解釋方式。堅持以上兩點,也即將生命現象作為純粹的解釋對象而從無機界來演繹,就意味著用“物質的原因解釋生命”與“生物學還原”是同一個問題。由于這種理想主義的固執,還原論所遭遇的困境甚于現代自主論。

3.現代還原論的困境

還原論的致命之處,主要不在于它反對現代自主論的原則,而在于反對現實的生物學理論的形式和內容去追求一種不太切合實際的理想。對生物學理論中的目的性解釋和功能解釋的諸多責難及演繹還原的要求所依賴的合理性依據——解釋預言的檢驗是經驗上可操作的,已隨著現代生物學的成功而煙消云散,因為目的性解釋或功能解釋方式同樣在試驗上可檢驗。面對現代生物學的成功,以及還原所難以克服的諸多困難,再加上現代自主論強有力的批判和否定,現代還原論發現,剩下來可依賴的唯一合理性是哲學意義上的依據,即“生命來自于無機界”這一預設性和承諾性命題,我們不應“以‘生命’解釋生命”,也不應“以‘生命’解釋物質”,合理的“解釋矢量”的方向應是“以‘物質’解釋生命現象”。在這里,“生命現象”是一個很不具體的抽象概念,實際上可具體為被“約束”或“規范”的物質行為表現和“約束”或“規范”機制本身,這是真正的解釋對象,也是理論自主性的實在性基礎。因而,對于還原論來說,追究“基因”或“遺傳信息”的起源和分子進化機制已成為其最后的堅守陣地,并且,當代自組織理論和超循環理論的盛行,似乎為還原論帶來了令人振奮的希望。

邁爾曾將生物學理論劃分為功能生物學與進化生物學,(4)在功能生物學中,基因所攜帶的遺傳信息是生物學一切功能和目的的基礎和源泉,只要突破這一點,即能夠用物理——化學的語言演繹地描述形成遺傳信息的分子進化機制,那么,還原論至少在原則上取得了勝利。但是,通過以下分析,這種希望似乎又是水中之月。

前面說過,“自主性概念”之所以“自主”,是由于它直接對應于生命現象或認定“生命的實在”,它反映了生命特有的本質,因此,它作為理論的起點,不必給予也不可能進行物理——化學的描述。還原論否認存在生命的特質,把所謂“自主性概念”或直接來自生命現象的概念看成是“復合性”的,可分解為諸多物理——化學的術語和概念,與此相應的試驗上可操作性依據是生物化學對生命有機體的組成還原。但是,組成上的還原雖然可作為生命與無機界密切聯系的依據,但也沒有否定現代自主論的“用物質的原因解釋生命不等于還原”的命題及所堅持的原則。否定“自主性概念”的充分條件不僅僅是把它看成“復合性”的,而且要以物理——化學的術語和概念邏輯地導出它的內涵。如果只滿足于組成上的還原,結果只能是以“自主性概念”為核心來賦予生物大分子及其行為以生命意義(2)。與邏輯導出相對應的試驗依據不是組成上的分解還原,而是與邏輯導出同向的試驗可操作性,說白了,就是由無機要素合成生命,哪怕是最簡單的生命現象。例如,對于超循環論來說,就是生物大分子超循環耦合能否在試驗條件下發生,這涉及到“生命來自無機界”這一命題由哲學化向具體的科學化的過渡,關系到還原論在科學上能否真正站穩。但是:

第一,由無機到生命,經歷了漫長時間,并且,生命的產生和演化是在十分優越的條件下選擇了唯一快捷的途徑而發生的。以人類的有限生命和歷史是否有能力進行這種操作呢?這就象大海里的沙子,原則上是有限的,如果想數清楚有多少粒,則在實踐上是一個無限的問題。退一步說,僅理論上的操作,即以物理——化學諸要素,通過在無機背景下取得的參數,進行自組織理論的非線性過程計算,來描述無機與生命之間的邏輯關系,這種非線性理論的計算操作也同樣是事實上的無限復雜。這種原則上的有限而實踐上的無限,直接沖擊還原論的哲學基礎:決定論。只有決定論成立,由無機到生命的邏輯演繹方式才是理論上可操作的,才具有進行預測和試驗上可操作的價值和意義;決定論的前提又是自然有限論,而無限性就意味著不確定性,也就意味著邏輯演繹的理論之路是不通暢的、實踐之路是不可操作的。

第二,自組織理論本身的結論——非線性過程的不可逆性,使這種操作不可能。從無機到生命的歷史過程,其中有許多偶然性或隨機因素起了決定作用并已作為“信息”儲存于生物大分子的結構中。由于偶然性或隨機因素的不可重復,使時間不可反演,因而整個過程無法進行重復操作。

第三,自組織理論和超循環論的非線性動力學過程的不確定性,使從無機到生命的演繹過程不可能。在此,應對“因果決定論”與“演繹解釋方式”作出區分,一般來說,這二者被合二為一地用來與目的性解釋或功能解釋方式相對立,但它們之間是有區別的。因果決定論是用來表述定律或原理的方式,而演繹解釋的方式是解釋體系乃至理論體系的構成框架,即因果決定論形式的定律或原理是作為演繹框架的解釋前提而出現的。這就可以提出這樣的問題:否定了因果決定論的自組織理論的非線性過程的定律、原理是否可以作為從無機到生命演繹解釋框架的解釋前提呢?按照還原論解釋的要求,如果中間環節有不確定因素,將阻礙這種演繹解釋的邏輯通道的暢通。只有解釋前提的因果決定論形式才與整體的演繹解釋框架相諧調。盡管自組織理論及超循環論這一新物理科學曾經被討論的熱火朝天,由于它在分子自組織領域內就已經在邏輯上不確定了,因而,至今為止它對生物學的影響只限于描述性地說說而已,至多提供一個框架式的思想啟示。

4.結語

還原論所遭遇的困境,是由于堅守著理想主義的科學信仰而不顧生物學現實。但是,無論是同情還原論而提出的帶有折衷性的整體還原,還是反對還原論的自主論,在其構建生物學理論的建議中,只要還主張保存直接來自于生命現象的術語和概念,并且不可被物理——化學的術語和概念、也即描述無機世界的術語和概念所代替,都是在認識論上允許預先設定生命現象作為解釋的起點,從而在本體論上承諾了存在著一種生命特質,也就有違于“從無機到生命的歷史走向和邏輯走向相一致”這一基本的科學承諾。

在現代生物學面前,還原論成為固執地堅守理想和信仰的犧牲者而在所不惜,自主論由于切合生物學理論的現實而取得了優勢,并以能夠指導未來生物學理論的構建為最大的價值所在。但是,筆者認為,一門學科,特別是具有哲學色彩的學科,其意義和價值不應僅僅依賴于其他學科,更不能以其可否“指導”自然科學的發展為其價值標準。邏輯實證主義起始的現代科學哲學的歷史已證明這種“指導”是虛妄和徒勞的,科學往往自我發展而不聽命于哲學家的“指導”。在這方面,還原論也并不是無可厚非。無論是還原論還是自主論,它們的目的都是企圖指導生物學理論按照它們指定的框架來運行,結果使我們處于這樣一個悖論之中:如果信守“生命來自無機界”這一命題,則應否定“不能用描述無機界物質運動的概念、規律即物理科學進行還原”;而堅持還原論,則遇到操作上包括不確定性對演繹過程的否定的阻礙。這是否值得我們反思一下過于功利主義傾向的行為,以修正我們對科學的哲學探討的目的?科學哲學的真正意義和價值在于自身,在于對科學及其與自然的關系的理解,在于它自身體系的建立,這個體系體現了人類的心智對完美的追求和向往。這一點,特別是在一個人欲橫流的社會里,是極為可貴和重要的。

【參考文獻】

(1)Rosenberg.A.(1985).The Structure of Biological Science.(Cambridge:cambridge University Press).

(2)郭壘:“生物學自主性與物理科學的理論構建”,《自然辯證法研究》,1995年第3期。

(3)董國安、呂國輝:“生物學自主性與廣義還原”,《自然辯證法研究》,1996年第3期。