數據融合技術在林業中的發展論文
時間:2022-07-14 10:33:00
導語:數據融合技術在林業中的發展論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
摘要:介紹了數據融合技術的基本概念和內容,分析了該技術在森林防火、森林蓄積特征的估計和更新、森林資源調查等方面的應用,提出該技術可應用于木材無損檢測及精確林業。融合機器視覺、X射線等單一傳感器技術檢測木材及木制品,可以更準確地實時檢測出木材的各種缺陷;集成GPS、GIS、RS及各種實時傳感器信息,利用智能決策支持系統以及可變量技術,能夠實現基于自然界生物及其賴以生存的環境資源的時空變異性的客觀現實,建立基于信息流融合的精確林業系統。
關鍵詞:數據融合傳感器無損檢測精確林業應用
多傳感器融合系統由于具有較高的可靠性和魯棒性,較寬的時間和空間的觀測范圍,較強的數據可信度和分辨能力,已廣泛應用于軍事、工業、農業、航天、交通管制、機器人、海洋監視和管理、目標跟蹤和慣性導航等領域[1,2]。筆者在分析數據融合技術概念和內容的基礎上,對該技術在林業工程中的應用及前景進行了綜述。
1數據融合
1.1概念的提出
1973年,數據融合技術在美國國防部資助開發的聲納信號理解系統中得到了最早的體現。70年代末,在公開的技術文獻中開始出現基于多系統的信息整合意義的融合技術。1984年美國國防部數據融合小組(DFS)定義數據融合為:“對多源的數據和信息進行多方的關聯、相關和綜合處理,以更好地進行定位與估計,并完全能對態勢及帶來的威脅進行實時評估”。
1998年1月,Buchroithner和Wald重新定義了數據融合:“數據融合是一種規范框架,這個框架里人們闡明如何使用特定的手段和工具來整合來自不同渠道的數據,以獲得實際需要的信息”。
Wald定義的數據融合的概念原理中,強調以質量作為數據融合的明確目標,這正是很多關于數據融合的文獻中忽略但又是非常重要的方面。這里的“質量”指經過數據融合后獲得的信息對用戶而言較融合前具有更高的滿意度,如可改善分類精度,獲得更有效、更相關的信息,甚至可更好地用于開發項目的資金、人力資源等[3]。
1.2基本內容
信息融合是生物系統所具備的一個基本功能,人類本能地將各感官獲得的信息與先驗知識進行綜合,對周圍環境和發生的事件做出估計和判斷。當運用各種現代信息處理方法,通過計算機實現這一功能時,就形成了數據融合技術。
數據融合就是充分利用多傳感器資源,通過對這些多傳感器及觀測信息的合理支配和使用,把多傳感器在空間或時間上的冗余或互補信息依據某些準則進行組合,以獲得被測對象的一致性解釋或描述。數據融合的內容主要包括:
(1)數據關聯。確定來自多傳感器的數據反映的是否是同源目標。
(2)多傳感器ID/軌跡估計。假設多傳感器的報告反映的是同源目標,對這些數據進行綜合,改進對該目標的估計,或對整個當前或未來情況的估計。
(3)采集管理。給定傳感器環境的一種認識狀態,通過分配多個信息捕獲和處理源,最大限度地發揮其性能,從而使其操作成本降到最低。傳感器的數據融合功能主要包括多傳感器的目標探測、數據關聯、跟蹤與識別、情況評估和預測[4]。
根據融合系統所處理的信息層次,目前常將信息融合系統劃分為3個層次:
(l)數據層融合。直接將各傳感器的原始數據進行關聯后,送入融合中心,完成對被測對象的綜合評價。其優點是保持了盡可能多的原始信號信息,但是該種融合處理的信息量大、速度慢、實時性差,通常只用于數據之間配準精度較高的圖像處理。
(2)特征層融合。從原始數據中提取特征,進行數據關聯和歸一化等處理后,送入融合中心進行分析與綜合,完成對被測對象的綜合評價。這種融合既保留了足夠數量的原始信息,又實現了一定的數據壓縮,有利于實時處理,而且由于在特征提取方面有許多成果可以借鑒,所以特征層融合是目前應用較多的一種技術。但是該技術在復雜環境中的穩健性和系統的容錯性與可靠性有待進一步改善。
(3)決策層融合。首先每一傳感器分別獨立地完成特征提取和決策等任務,然后進行關聯,再送入融合中心處理。這種方法的實質是根據一定的準則和每個決策的可信度做出最優的決策。其優點是數據通訊量小、實時性好,可以處理非同步信息,能有效地融合不同類型的信息。而且在一個或幾個傳感器失效時,系統仍能繼續工作,具有良好的容錯性,系統可靠性高,因此是目前信息融合研究的一個熱點。但是這種技術也有不足,如原始信息的損失、被測對象的時變特征、先驗知識的獲取困難,以及知識庫的巨量特性等[5,6]。
1.3處理模型
美國數據融合工作小組提出的數據融合處理模型[7],當時僅應用于軍事方面,但該模型對人們理解數據融合的基本概念有重要意義。模型每個模塊的基本功能如下:
數據源。包括傳感器及其相關數據(數據庫和人的先驗知識等)。
源數據預處理。進行數據的預篩選和數據分配,以減輕融合中心的計算負擔,有時需要為融合中心提供最重要的數據。目標評估。融合目標的位置、速度、身份等參數,以達到對這些參數的精確表達。主要包括數據配準、跟蹤和數據關聯、辨識。
態勢評估。根據當前的環境推斷出檢測目標與事件之間的關系,以判斷檢測目標的意圖。威脅評估。結合當前的態勢判斷對方的威脅程度和敵我雙方的攻擊能力等,這一過程應同時考慮當前的政治環境和對敵策略等因素,所以較為困難。
處理過程評估。監視系統的性能,辨識改善性能所需的數據,進行傳感器資源的合理配置。人機接口。提供人與計算機間的交互功能,如人工操作員的指導和評價、多媒體功能等。
2多傳感器在林業中的應用
2.1在森林防火中的應用
在用MODIS(ModerateResolutionImagingSpectroradiometer)數據測定森林火點時的20、22、23波段的傳感器輻射值已達飽和狀態,用一般圖像增強處理方法探測燃燒區火點的結果不理想。余啟剛運用數據融合技術,在空間分辨率為1000m的熱輻射通道的數據外加入空間分辨率為250m的可見光通道的數據,較好地進行了不同空間分辨率信息的數據融合,大大提高了對火點位置的判斷準確度[8]。為進一步提高衛星光譜圖像數據分析的準確性與可靠性,利用原有森林防火用的林區紅外探測器網,將其與衛星光譜圖像數據融合,可以使計算機獲得GPS接收機輸出的有關信息通過與RS實現高效互補性融合,從而彌補衛星圖譜不理想的缺失區數據信息,大大提高燃燒區火點信息準確度和敏感性。
2.2森林蓄積特征的估計
HampusHolmstrom等在瑞典南部的試驗區將SPOT-4×S衛星數據和CARABAS-IIVHFSAR傳感器的雷達數據進行了融合,采用KNN(knearestneighbor)方法對森林的蓄積特征(林分蓄積、樹種組成與年齡)進行了估計[9]。
KNN方法就是采用目標樣地鄰近k個(k=10)最近樣地的加權來估計目標樣地的森林特征。研究者應用衛星光譜數據、雷達數據融合技術對試驗區的不同林分的蓄積特征進行估計,并對三種不同的數據方法進行誤差分析。試驗表明,融合后的數據作出的估計比單一的衛星數據或雷達數據的精度高且穩定性好。
2.3用非垂直航空攝像數據融合GIS信息更新調查數據
森林資源調查是掌握森林資源現狀與變化的調查方法,一般以地面調查的方法為主,我國5年復查一次。由于森林資源調查的工作量巨大,且要花費大量的人力、物力和資金。國內外許多學者都在探索航空、航天的遙感調查與估計方法。
TrevorJDavis等2002年提出采用非垂直的航空攝影數據融合對應的GIS數據信息實現森林調查數據的快速更新,認為對森林資源整體而言,僅某些特殊地區的資源數據需要更新。在直升飛機側面裝上可視的數字攝像裝置,利用GPS對測點進行定位,對特殊地區的攝像進行拍攝,同時與對應的GIS數據進行融合,做出資源變化的估計或影像的修正[10]。
試驗表明,融合后的數據可以同高分辨率矯正圖像相比,該方法花費少,精度高,能充分利用影像的可視性,應用于偏遠、地形復雜、不易操作、成本高的區域,同時可避免遙感圖像受云層遮蓋。
3數據融合在林業中的應用展望
3.1在木材檢測中的應用
3.1.1木材缺陷及其影響
木材是天然生長的有機體,生長過程中不可避免地有尖削度、彎曲度、節子等生長缺陷,這些缺陷極大地影響了木材及其制品的優良特性,以及木材的使用率、強度、外觀質量,并限制了其應用領域。在傳統木制品生產過程中,主要依靠人的肉眼來識別木材缺陷,而木材板材表面缺陷在大小、形狀和色澤上都有較大的差異,且受木材紋理的影響,識別起來非常困難,勞動強度大,效率低,同時由于熟練程度、標準掌握等人為因素,可能造成較大的誤差。另外在集成材加工中,板材缺陷的非雙面識別嚴重影響了生產線的生產節拍。因此必須開發一種能夠對板材雙面缺陷進行在線識別和自動剔除技術,以解決集成材加工中節子人工識別誤差大、難以實現雙面識別、剔除機械調整時間長等問題。
3.1.2單一傳感器在木材檢測中的應用
對木材及人造板進行無損檢測的方法很多,如超聲波、微波、射線、機械應力、震動、沖擊應力波、快速傅立葉變換分析等檢測方法[11,12]。超聲技術在木材工業中的應用研究主要集中在研究聲波與木材種類、木材結構和性能之間的關系、木材結構及缺陷分析、膠的固化過程分析等[13]。
隨著計算機視覺技術的發展,人們也將視覺傳感器應用于木材檢測中。新西蘭科學家用視頻傳感器研究和測量了紙漿中的纖維橫切面的寬度、厚度、壁面積、壁厚度、腔比率、壁比率等,同時準確地測量單個纖維和全部纖維的幾何尺寸及其變化趨勢,能夠區分不同紙漿類型,測定木材纖維材料加固結合力,并動態地觀察木材纖維在材料中的結合機理。
新西蘭的基于視覺傳感器的板材缺陷識別的軟件已經產業化,該軟件利用數碼相機或激光掃描儀采集板材的圖像,自動識別板材節子和缺陷的位置,控制板材的加工。該軟件還具有進行原木三維模型真實再現的計算機視覺識別功能,利用激光掃描儀自動采集原木的三維幾何數據。
美國林產品實驗室利用計算機視覺技術對木材刨花的尺寸大小進行分級,確定各種刨花在板中的比例和刨花的排列方向;日本京都大學基于視覺傳感器進行了定向刨花板內刨花定向程度的檢測,從而可以通過調整定向鋪裝設備優化刨花的排列方向來提高定向刨花板的強度。
在制材加工過程中,利用計算機視覺技術在線實時檢測原木的形狀及尺寸,選擇最佳下鋸方法,提高原木的出材率。同時可對鋸材的質量進行分級,實現木材的優化使用;在膠合板的生產過程中,利用計算機視覺技術在線實時檢測單板上的各種缺陷,實現單板的智能和自動剪切,并可測量在剪切過程中的單板破損率,對單板進行分等分級,實現自動化生產過程。Wengert等在綜合了大量的板材分類經驗的基礎上,建立了板材分級分類的計算機視覺專家系統。在國內這方面的研究較少,王金滿等用計算機視覺技術對刨花板施膠效果進行了定量分析[14]。
X射線對木材及木質復合材料的性能檢測已得到了廣泛的應用,目前該技術主要應用于對木材密度、含水率、纖維素相對結晶度和結晶區大小、纖維的化學結構和性質等進行檢測,并對木材內部的各種缺陷進行檢測。
3.1.3數據融合在木材檢測中的應用展望
單一傳感器在木材工業中已得到了一定程度的應用,但各種單項技術在應用上存在一定的局限性。如視覺傳感器不能檢測到有些與木材具有相同顏色的節子,有時會把木板上的臟物或油脂當成節子,造成誤判,有時也會受到木材的種類或粗糙度和濕度的影響,此外,這種技術只能檢測部分表面缺陷,而無法檢測到內部缺陷;超聲、微波、核磁共振和X射線技術均能測量密度及內部特征,但是它們不能測定木材的顏色和瑕疵,因為這些缺陷的密度往往同木板相同。因此,一個理想的檢測系統應該集成各種傳感技術,才能準確、可靠地檢測到木材的缺陷[15,16]。
基于多傳感器(機器視覺及X射線等)數據融合技術的木材及木制品表面缺陷檢測,可以集成多個傳統單項技術,更可靠、準確地實時檢測出木材表面的各種缺陷,為實現木材分級自動化、智能化奠定基礎,同時為集裁除鋸、自動調整、自動裁除節子等為一身的新型視頻識別集成材雙面節子數控自動剔除成套設備提供技術支持。
3.2在精確林業中的應用
美國華盛頓大學研究人員開展了樹形自動分析、林業作業規劃等研究工作;Auburn大學的生物系統工程系和USDA南方林業實驗站與有關公司合作開展用GPS和其他傳感器研究林業機器系統的性能和生產效率。
目前單項的GPS、RS、GIS正從“自動化孤島”形式應用于林業生產向集成技術轉變。林業生產系統作為一個多組分的復雜系統,是由能量流動、物質循環、信息流動所推動的具有一定的結構和功能的復合體,各組分間的關系和結合方式影響系統整體的結構和功能。因此應該在計算機集成系統框架下,有效地融合GPS、GIS、RS等數據,解決這些信息在空間和時間上的質的差異及空間數據類型的多樣性,如地理統計數據、柵格數據、點數據等。利用智能DSS(決策支持系統)以及VRT(可變量技術)等,使林業生產成為一個高效、柔性和開放的體系,從而實現林業生產的標準化、規范化、開放性,建立基于信息流融合的精確林業系統。
南京林業大學提出了“精確林業工程系統”[17]。研究包括精確林業工程系統的領域體系結構、隨時空變化的數據采集處理與融合技術、精確控制林業生產的智能決策支持系統、可變量控制技術等,實現基于自然界生物及其所賴以生存的環境資源的時空變異性的客觀現實,以最小資源投入、最小環境危害和最大產出效益為目標,建立關于林業管理系統戰略思想的精確林業微觀管理系統。
[參考文獻]
[1]高翔,王勇.數據融合技術綜述[J].計算機控制與測量,2002,10(11):706-709.
[2]龔元明,蕭德云,王俊杰.多傳感器數據融合技術(上)[J].冶金自動化,2002(4):4-7.
[3]錢永蘭,楊邦杰,雷廷武.數據融合及其在農情遙感監測中的應用與展望[J].農業工程學報,2004,20(4):286-290.
[4]高德平,黃雪梅.多傳感器和數據融合(一)[J].紅外與激光工程,1999,28(1):1-4.
[5]王耀南,李樹濤.多傳感器信息融合及其應用綜述[J].控制與決策,2001,16(5):518-52.
[6]許軍,羅飛路,張耀輝.多傳感器信息融合技術在無損檢測中的應用研究[J].無損檢測,2000,22(8):342-344.
[7]WhiteFE.Datafusionlexicon:DatafusionsubpanelofthejointdirectorsoflaboratoriestechnicalpanelforC3[R].SanDiego,1991.
[8]余啟剛.數據融合技術在“3S”森林防火中的應用[J].森林工程,2003,19(4):5-6.
[9]HampusHolmstrom,biningremotelysensedopticalandradardatainKNN-estimationofforest[J].ForestScience,2003,49(3):409-418.
[10]TrevorJDavis,BrianKlinkenberg,PeterKellerC.Updatinginventory:Usingobliquevideogrammetry&datafusion[J].JournalofForestry,2002,100(2):45-50.
[11]楊春梅,胡萬義,白帆,等.木材缺陷檢測理論及方法的發展[J].林業機械與木工設備,2004,32(3):8-10.
[12]胡英成,顧繼友,王逢瑚.木材及人造板物理力學性能無損檢測技術研究的發展與展望[J].世界林業研究,2002,15(4):39-46.
[13]肖忠平,盧曉寧,陸繼圣.木質材料X射線與超聲檢測技術研究的發展與展望[J].木材加工機械,2004,15(1):25-27.
[14]王金滿,周秀榮.刨花板施膠效果計算機視覺分析方法[J].東北林業大學學報,1994,22(3):25-26.
[15]KlinkhachornP.Prototypinganautomatedlumberprocessingsystem[J].ForestProductsJournal,1993(2):11-18.
[16]DucTruongPham,RobertJ,Alcock.AutomatedgradinganddefectDetection:areview[J].ForestProductsJournal,1998,48(4):34-42.
[17]鄭加強,徐幼林.基于可持續發展的精確林業思想研究[J].南京林業大學學報(人文社會科學版),2004,4(3):26-30.
- 上一篇:普通黨員廉政準則學習體會
- 下一篇:一年級班級工作情況匯報