電動機論文范文

時間:2023-03-20 10:58:01

導語:如何才能寫好一篇電動機論文,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

電動機論文

篇1

論文摘要:在現代化生產程度很高的今天,企業的生產,產品的加工制造以及人們的日常生活都離不開電動機的使用,在電動機的使用過程當中有很多注意事項以及要求,否則將會發生機器的損壞,這對企業的運轉,人民生活等都會帶來諸多不便。對電動機常見的故障,主要分為電氣和機械兩種,每一種故障都給電動機的安全運行帶來極大威脅。因此,對電動機的故障分析維護與檢修更顯得至關重要。

電動機具有結構簡單,運行可靠,使用方便,價格低廉等特點。為保證時機的正常工作對運行的電動機要按電動機完好質量標準的要求進行檢查,運行中的電動機與被拖動設備的軸心要對正,運行中無明顯的振動,一定要保持通風良好、風翅等要完整無缺。要時刻觀察和測量電動機電網電壓和正常工作電流,電壓變化不應超過額定電壓的±5%,電動機的額定負荷電流不能經常超過額定電流,以防時機過熱,同時檢查電機起動保護裝置的動作是否靈活可靠。檢查電動機各部分溫升是否正常,還要經常檢查軸承溫度,滑動軸承不得超過度,滾動軸承不得超過70度,滾動軸承運轉中的聲音要清晰、無雜音。對于電動機的運轉環境要做到防砸、防淋、防潮。對于環境不良,經常挪動、頻繁起動、過載運行等要加強日常維護和保養,及時發現和消除隱患。

一、電動機電氣常見故障的分析和處理

(一)時機接通后,電動機不能起動,但有嗡嗡聲

可能原因:(1)電源沒有全部接通成單相起動;(2)電動機過載;(3)被拖動機械卡??;(4)繞線式電動機轉子回路開路成斷線;(5)定子內部首端位置接錯,或有斷線、短路。

處理方法:(1)檢查電源線,電動機引出線,熔斷器,開關的各對觸點,找出斷路位置,予以排除;(2)卸載后空載或半載起動;(3)檢查被拖動機械,排除故障;(4)檢查電刷,滑環和起動電阻各個接觸器的接合情況;(5)重新判定三相的首尾端,并檢查三相繞組是否有燦線和短路。

(二)電動機起動困難,加額定負載后,轉速較低。

可能原因:(1)電源電壓較低;(2)原為角接誤接成星接;(3)鼠籠型轉子的籠條端脫焊,松動或斷裂。

處理方法:(1)提高電壓;(2)檢查銘牌接線方法,改正定子繞組接線方式;(3)進行檢查后并對癥處理。

(三)電動機起動后發熱超過溫升標準或冒煙

可能原因:(1)電源電壓過低,電動機在額定負載下造成溫升過高;(2)電動機通風不良或環境濕度過高;(3)電動機過載或單相運行;(4)電動機起動頻繁或正反轉次數過多;(5)定子和轉子相擦。

處理方法:(1)測量空載和負載電壓;(2)檢查電動機風扇及清理通風道,加強通風降低環溫;(3)用鉗型電流表檢查各相電流后,對癥處理;(4)減少電動機正反轉次數,或更換適應于頻繁起動及正反轉的電動機;(5)檢查后姨癥處理。

(四)絕緣電阻低

可能原因:(1)繞組受潮或淋水滴入電動機內部;(2)繞組上有粉塵,油圬;(3)定子繞組絕緣老化。

處理方法:(1)將定子,轉子繞組加熱烘干處理;(2)用汽油擦洗繞組端部烘干;(3)檢查并恢復引出線絕緣或更換接線盒絕緣線板;(4)一般情況下需要更換全部繞組。

(五)電動機外殼帶電:

可能原因:(1)電動機引出線的絕緣或接線盒絕緣線板;(2)繞組端部碰機殼;(3)電動機外殼沒有可靠接地

處理方法:(1)恢復電動機引出線的絕緣或更換接線盒絕緣板;(2)如卸下端蓋后接地現象即消失,可在繞組端部加絕緣后再裝端蓋;(3)按接地要求將電動機外殼進行可靠接地。

(六)電動機運行時聲音不正常

可能原因:(1)定子繞組連接錯誤,局部短路或接地,造成三相電流不平衡而引起噪音;(2)軸承內部有異物或嚴重缺油。

處理方法:(1)分別檢查,對癥下藥;(2)清洗軸承后更換新油為軸承室的1/2-1/3。

(七)電動機振動

可能原因:(1)電動機安裝基礎不平;(2)電動機轉子不平衡;(3)皮帶輪或聯軸器不平衡;(4)轉軸軸頭彎曲或皮帶輪偏心;(5)電動機風扇不平衡。

處理方法:(1)將電動機底座墊平,時機找水平后固牢;(2)轉子校靜平衡或動平衡;(3)進行皮帶輪或聯軸器校平衡;(4)校直轉軸,將皮帶輪找正后鑲套重車;(5)對風扇校靜。

二、電動機機械常見故障的分析和處理

(一)定、轉子鐵芯故障檢修

定、轉子都是由相互絕緣的硅鋼片疊成,是電動機的磁路部分。定、轉子鐵芯的損壞和變形主要由以下幾個方面原因造成。

(1)軸承過度磨損或裝配不良,造成定、轉子相擦,使鐵芯表面損傷,進而造成硅鋼片間短路,電動機鐵損增加,使電動機溫升過高,這時應用細銼等工具去除毛刺,消除硅鋼片短接,清除干凈后涂上絕緣漆,并加熱烘干。

(2)拆除舊繞組時用力過大,使倒槽歪斜向外張開。此時應用小嘴鉗、木榔頭等工具予以修整,使齒槽復位,并在不好復位的有縫隙的硅鋼片間加入青殼紙、膠木板等硬質絕緣材料。

(3)因受潮等原因造成鐵芯表面銹蝕,此時需用砂紙打磨干凈,清理后涂上絕緣漆。

(4)因繞組接地產生高熱燒毀鐵芯或齒部。可用鑿子或刮刀等工具將熔積物剔除干凈,涂上絕緣溱烘干。

(5)鐵芯與機座間結合松動,可擰緊原有定位螺釘。若定位螺釘失效,可在機座上重鉆定位孔并攻絲,旋緊定位螺釘。

(二)軸承故障檢修

轉軸通過軸承支撐轉動,是負載最重的部分,又是容易磨損的部件。

(1)故障檢查

運行中檢查:滾動軸承缺油時,會聽到骨碌骨碌的聲音,若聽到不連續的梗梗聲,可能是軸承鋼圈破裂。軸承內混有沙土等雜物或軸承零件有輕度磨損時,會產生輕微的雜音。

拆卸后檢查:先察看軸承滾動體、內外鋼圈是否有破損、銹蝕、疤痕等,然后用手捏住軸承內圈,并使軸承擺平,另一只手用力推外鋼圈,如果軸承良好,外鋼圈應轉動平穩,轉動中無振動和明顯的卡滯現象,停轉后外鋼圈沒有倒退現象,否則說明軸承已不能再用了。左手卡住外圈,右手捏住內鋼圈,用力向各個方向推動,如果推動時感到很松,就是磨損嚴重。

(2)故障修理

軸承外表面上的銹斑可用00號砂紙擦除,然后放入汽油中清洗;或軸承有裂紋、內外圈碎裂或軸承過度磨損時,應更換新軸承。更換新軸承時,要選用與原來型號相同的軸承。

(三)轉軸故障檢修

(1)軸彎曲

若彎曲不大,可通過磨光軸徑、滑環的方法進行修復;若彎曲超過0.2mm,可將軸放于壓力機下,在拍彎曲處加壓矯正,矯正后的軸表面用車床切削磨光;如彎曲過大則需另換新軸。

(2)軸頸磨損

軸頸磨損不大時,可在軸頸上鍍一層鉻,再磨削至需要尺寸;磨損較多時,可在軸頸上進行堆焊,再到車床上切削磨光;如果軸頸磨損過大時,也在軸頸上車削2-3mm,再車一套筒趁熱套在軸頸上,然后車削到所需尺寸。

(3)軸裂紋或斷裂

軸的橫向裂紋深度不超過軸直徑的10%-15%,縱向裂紋不超過軸長的10%時,可用堆焊法補救,然后再精車至所需尺寸。若軸的裂紋較嚴重,就需要更換新軸。

(四)機殼和端蓋的檢修

篇2

熱繼電器利用負載電流流過經校準的電阻元件,使雙金屬熱元件加熱后產生彎曲,從而使繼電器的觸點在電動機繞組燒壞以前動作。其動作特性與電動機繞組的允許過載特性接近。熱繼電器雖則動作時間準確性一般,但對電動機可以實現有效的過載保護。隨著結構設計的不斷完善和改進,除有溫度補償外,它還具有斷相保護及負載不平衡保護功能等。例如從ABB公司引進的T系列雙金屬片式熱過載繼電器;從西門子引進的3UA5、3UA6系列雙金屬片式熱過載繼電器;JR20型、JR36型熱過載繼電器,其中Jn36型為二次開發產品,可取代淘汰產品JRl6型。

帶有熱-磁脫扣的電動機保護用斷路器熱式作過載保護用,結構及動作原理同熱繼電器,其雙金屬熱元件彎曲后有的直接頂脫扣裝置,有的使觸點接通,最后導致斷路器斷開。電磁鐵的整定值較高,僅在短路時動作。其結構簡單、體積小、價格低、動作特性符合現行標準、保護可靠,故日前仍被大量采用。特別是小容量斷路器尤為顯著。例如從ABB公司引進的M611型電動機保護用斷路器,國產DWl5低壓萬能斷路器(200-630A)、S系列塑殼斷路器(100、200、400入)。

電子式過電流繼電器通過內部各相電流互感器檢測故障電流信號,經電子電路處理后執行相應的動作。電子電路變化靈活,動作功能多樣,能廣泛滿足各種類型的電動機的保護。其特點是:

①多種保護功能。主要有三種:過載保護,過載保護十斷相保護,過載保護十斷相保護+反相保護。

②動作時間可選擇(符合GBl4048.4-93標準)。

標準型(10級):7.2In(In為電動機額定電流),4-1Os動作,用于標準電動機過載保護,速動型(10A級):7.2In時,2-1Os動作,用于潛水電動機或壓縮電動機過載保護。慢動型(30級):7.2In時,9-30s動作,用于如鼓風機電機等起動時間長的電動機過載保護。

③電流整定范圍廣。其最大值與最小值之比一般可達3-4倍,甚至更大倍數(熱繼電器為1.56倍),特別適用于電動機容量經常變動的場合(例如礦井等)。

④有故障顯示。由發光二極管顯示故障類別,便于檢修。

固態繼電器它是一種從完成繼電器功能的簡單電子式裝置發展到具有各種功能的微處理器裝置。其成本和價格隨功能而異,最復雜的繼電器實際上只能用于較大型、較昂貴的電動機或重要場合。它監視、測量和保護的主要功能有:最大的起動沖擊電流和時間;熱記憶;大慣性負載的長時間加速;斷相或不平衡相電流;相序;欠電壓或過電壓;過電流(過載)運行;堵轉;失載(機軸斷裂,傳送帶斷開或泵空吸造成工作電流下跌);電動機繞組溫度和負載的軸承溫度;超速或失速。

上述每一種信息均可編程輸入微處理器,主要是加上需要的時限,以確保在電動機起動或運轉過程中產生損壞之前,將電源切斷。還可用發光二極管或數字顯示故障類別和原因,也可以對外向計算機輸出數據。

軟起動器軟起動器的主電路采用晶閘管,控制其分斷或接通的保護裝置一般做成故障檢測模塊,用來完成對電動機起動前后的異常故障檢測,如斷相、過熱、短路、漏電和不平衡負載等故障,并發出相應的動作指令。其特點是系統結構簡單,采用單片機即可完成,適用于工業控制。

2溫度檢測型保護裝置

雙金屬片溫度繼電器它直接埋入電動機繞組中。當電動機過載使繞組溫度升高至接近極限值時,帶有一觸頭的雙金屬片受熱產生彎曲,使觸點斷開而切斷電路。產品如JW2溫度繼電器。

熱保護器它是裝在電動機本體上使用的熱動式過載保護繼電器。與溫度繼電器不同的是帶2個觸頭的碗形雙金屬片作為觸橋串在電動機回路,既有流過的過載電流使其發熱,又有電動機溫度使其升溫,達到一定值時,雙金屬片瞬間反跳動作,觸點斷開,分斷電動機電流。它可作小型三相電動機的溫度、過載和斷相保護。產品如sPB、DRB型熱保護器。

檢測線圈測溫電動機定子每相繞組中埋入1-2個檢測線圈,由自動平衡式溫度計來監視繞組溫度。

熱敏電阻溫度繼電器它直接埋入電動機繞組中,一旦超過規定溫度,其電阻值急劇增大10-1000倍。使用時,配以電子電路檢測,然后使繼電器動作。產品如JW9系列船用電子溫度繼電器。

保護裝置與三相交流異步異步電動機的協調配合

為了確保異步電動機的正常運行及對其進行有效的保護,必須考慮異步電動機與保護裝置之間的協調配合。特別是大容量電網中使用小容量異步電動機時,保護的協調配合更為突出。

a.過載保護裝置與電動機的協調配合

過載保護裝置的動作時間應比電動機起動時間略長一點。由附圖可見,電動機過載保護裝置的特性只有躲開電動機起動電流的特性,才能確保其正常運轉;但其動作時間又不能太長,其特性只能在電動機熱特性之下才能起到過載保護作用。

過載保護裝置瞬時動作電流應比電動機起動沖擊電流略大一點。如有的保護裝置帶過載瞬時動作功能,則其動作電流應比起動電流的峰值大一些,才能使電動機正常起動。

過載保護裝置的動作時間應比導線熱特性小一點,才能起到供電線路后備保護的功能。

b.過載保護裝置與短路保護裝置的協調配合一般過載保護裝置不具有分斷短路電流的能力。一旦在運行中發生短路,需要由串聯在主電路中的短路保護裝置(如斷路器或熔斷器等)來切斷電路。若故障電流較小,屬于過載范圍,則仍應由過載保護裝置切斷電路。故兩者的動作之間應有選擇性。短路保護裝置特性是以熔斷器作代表說明的,與過載保護特性曲線的交點電流為Ij,若考慮熔斷器特性的分散性,則交點電流有Is及IB兩個,此時就要求Is及以下的過電流應由過載保護裝置來切斷電路,Ib及以上直到允許的極限短路電流則由短路保護裝置來切斷電路,以滿足選擇性要求。顯然,在Is-IB范圍內就很難確保有選擇性.因此要求該范圍應盡量小。

結語

篇3

關鍵詞:電動機無功補償諧波

三相交流異步電動機具有一系列優點,作為動力設備在各行業中獲得極廣泛的應用,它在運行中依靠磁場傳遞進行能量轉換來工作,不僅消耗有功功率,也需要無功工率。屬感性負荷,因此功率因數較低,約為0.76~0.89,一般需要并聯電容器進行補償,以提高功率因數,同時也提高了端電壓,有利于電動機的起動。

電動機進行無功補償具有增容、節能、提高出力等優點,經濟效益顯著,目前已得到推廣應用,但在推廣中,對某些可能存在的問題(例如諧波的危害等)并沒給予足夠的重視與研究,現筆者通過下面實例說明,電動機進行無功補償時,若條件合適,同樣存在因諧波放大而造成的危害,應引起我們的注意。

1概況

我省境內某抽水站,安裝運行3臺180kW電動機,由于該站地處電網末端,電壓較低,電機經常起動困難,為了提高功率因數和電壓,用自愈式并聯電容器(電容器回路中未串聯電抗器)進行無功補償,但是當電容器接入電網運行后,時間不長,就出現電容器損壞現象,隨著運行時間增加,損壞的電容器越來越多,當時,懷疑電容器質量不良,就更換了電容器,但更后,仍出現同樣問題,有關方面才懷疑是否存在其他原因,向我們提出咨詢。

我們根據情況進行分析后認為,雖然該站地處農村,附近沒有任何諧波源存在,電動機本身一般不作為諧波負荷處理,也沒有見到過電動機進行無功補償后發生諧波危害的報導,但還是不應排除存在諧波危害的可能,應先進行諧波測試與分析。

2電動機是產生高次諧波電流的諧波源

為了了解系統諧波情況,在低壓母線上僅有3臺電動機的運行工況時,進行了諧波測試與分析,為便于比較,將測試數據列于表1。

從表1中所列數據可以看到,諧波電流以3次及17次為主,根據測試數據,進行諧波功率計算后可知,3次諧波功率與基波功率方向相反,而17次諧波功率與基波功率方向相反,由此可判斷3次諧波電流系由電源的3次諧波電壓所產生,而17次諧波電流則由電動機所產生。對其他各次諧波進行計算,即可知16次等部分諧波電流亦由電動機所產生,因此電動機是產生高次諧波電流的諧波源,17次及其他各次諧波注入電網,使電網電壓波形畸變,其中17次諧波電壓高達4.727%,超過了GB/T14549-1993《電能質量公用電網諧波》中不大于4%的限值,同時也導致電壓總諧波率達到5.563%,也超過了不大于5%的規定。

3無功補償裝置投入后產生了諧波放大現象

在低壓母線運行著3臺電動機的工況下投入無功補償裝置,對電容器回路進行諧波測試,發現由于諧波放大,通過電容器的高次諧波電流很大,表2中列出了測試數據。

從表2中所列數據不難看出,無功補償裝置投運后,發生了嚴重的諧波放大現象,其中16次與17次諧波電流已分別達到基波電流的129.2%與237.1%,而自愈式并聯電容器國標中規定,包括諧波電流在內的允許過電流為1.3倍額定電流,因此,這時的諧波電流值是相當大的。

同時,電網的電壓波形畸變加劇,低壓母線電壓的16與17次諧波電壓含有率,分別由電容器投入前的1.886%與4.727%,增大到6.998%與11.34%,母線電壓總畸變率亦由5.563%增大到14.71%,大大超過諧波國標的有關限制值,諧波電壓的增大,說明注入電網的諧波電流也相應增大。

諧波電壓的增大,將直接影響連接于該母線的各種電氣設備的安全運行,資料表明,電動機在較高的諧波電壓作用下,將發熱燒壞,壽命縮短。

4電容器早期損壞的原因

4.1畸變的電壓波形使電容器局部放電性能下降

由于諧波的存在,電壓波形發生畸變,使電壓峰值增高,呈鋸齒狀尖頂波。圖1所示為實側的電壓波形。

一些試驗表明,尖頂波電壓易在介質中誘發局部放電,而且因電壓變化速率快,引起的局部放電強度也較大,這將對電容器絕緣介質的老化起加速作用。

電容器的局部放電性能一般可用起始放電場強與局放熄滅場強兩個參數來表征,若局放熄滅場強低于工作場強那么由于操作過電壓所誘發的局部放電就可能在工作場強下不能熄滅,而形成長時間的局部放電。

試驗表明,當電源電壓含有諧波時,電容器的局部放電起始電壓和熄滅電壓均相應下降,而且當諧波含量較大,諧波次數越高,下降幅值越大。

雖然自愈式并聯電容器國標中對局部放電性能未作明確要求,但是局部放電對絕緣介質的影響是客觀存在的,長時間的局部放電,必然加速絕緣介質的老化,使其自愈性能惡化,最終導致電容器損壞。

4.2嚴重的諧波過電流使電容器損耗功率增加,導致電容器異常發熱

在電容器的標準中,允許通過電容器的穩態過電流,應不超過電容器在額定頻率,額定正弦電壓下產生的電流的1.3倍,這個穩態過電流是由諧波和過電壓共同作用的結果。



在本次測試中,電壓沒有超過額定電壓,故過電流僅是諧波作用下的結果,現根據實際參數計算其過流情況,根據測試時基波電壓為181.5V(相電壓)諧波電流為基波電流的304.6%,電容器額定電壓400V,三相三角接法,由此可計算得其穩態過電流對額定電流的比值為:

式中:Ie為通過電容器的穩態過電流;

Ie1為電容器在額定頻率,額定電壓下產生的電流

過電流對電容器的影響主要是熱效應,而熱效應決定于損耗功率的大小,損耗功率與通過的電流平方成正比。

根據電容器允許過電流條件,可計算得實際損耗增加倍率S:

即電容器的實際損耗功率為允許值的3.76倍,因此,在如此大的損耗功率下,電容器將異常發熱,必然使其絕緣迅速老化而早期損壞。

5小結

篇4

1引言

在現代化生產過程控制中,執行機構起著十分重要的作用,它是自動控制系統中不可缺少的組成部分。現有的國產大流量電動執行機構存在著控制手段落后、機械傳動機構多、結構復雜、定位精度低、可靠性差等問題。而且執行機構的全程運行速度取決于其電機的輸出軸轉速和其內部減速齒輪的減速比,一旦出廠,這一速度固定不可調整,其通用性較弱。整個機構缺乏完善的保護和故障診斷措施以及必要的通信手段,系統的安全性較差,不便與計算機聯網。鑒于以上原因,采用傳統的大流量電動執行機構的控制系統,可靠性和穩定性較差。隨著計算機網絡、現場總線等技術在工業過程中的應用,這種執行機構已遠遠不能滿足工業生產的要求。筆者設計的大流量電動執行機構,采用機電一體化技術,將閥門、伺服電機、控制器合為一體,利用異步電動機直接驅動閥門的開與關。通過內置變頻器,采用模糊神經網絡,實現閥門的動作速度、精確定位、柔性開關以及電機轉矩等控制。該電動執行機構省去了用于控制電機正、反轉的接觸器和可控硅換向開關模件、機械傳動裝置和復雜、昂貴的控制柜和配電柜,具有動作快、保護較完善、便于和計算機聯網等優點。實際運行表明,該執行機構工作穩定,性能可靠。

2電動執行機構的硬件設計及工作原理

電動執行機構控制系統原理框圖如圖2-1所示。智能執行機構從結構上主要分為控制部分和執行驅動部分。

控制部分主要由單片機、PWM波發生器、IPM逆變器、A/D、D/A轉換模塊、整流模塊、輸入輸出通道、故障檢測和報警電路等組成。執行驅動部分主要包括三相伺報電機和位置傳感器。

系統工作原理:

霍爾電流、電壓傳感器及位置傳感器檢測到的逆變模塊三相輸出電流、電壓及閥門的位置信號,經A/D轉換后送入單片機。單片機通過8255控制PWM波發生器,產生的PWM波經光電耦合作用于逆變模塊IPM,實現電機的變頻調速以及閥位控制。逆變模塊工作時所需要的直流電壓信號由整流電路對380V電源進行全橋整流得到。

控制系統各功能元件的選型與設計:

1)單片機選用INTEL公司生產的8031單片機,它主要通過并行8255口擔負控制系統的信號處理:接收系統對轉矩、閥門開啟、關閉及閥門開度等設定信號,并提供三相PWM波發生器所需要的控制信號;處理IPM發出的故障信號和報警信號;處理通過模擬輸入口接收的電流、電壓、位置等檢測信號;提供顯示電動執行機構的工作狀態信號;執行控制系統來的控制信號,向控制系統反饋信號;

2)三相PWM波發生器PWM波的產生通常有模擬和數字兩種方法。模擬法電路復雜,有溫漂現象,精度低,限制了系統的性能;數字法是按照不同的數字模型用計算機算出各切換點,并存入內存,然后通過查表及必要的計算產生PWM波,這種方法占用的內存較大,不能保證系統的精度。為了滿足智能功率模塊所需要的PWM波控制信號,保證微處理器有足夠的時間進行整個系統的檢測、保護、控制等功能,文中選用MITEL公司生產的SA8282作為三相PWM發生器。SA8282是專用大規模集成電路,具有獨立的標準微處理器接口,芯片內部包含了波形、頻率、幅值等控制信息。

3)智能逆變模塊IPM為了滿足執行機構體積小,可靠性高的要求,電機電源采用智能功率模塊IPM。該執行機構主要適用功率小于5.5kW的三相異步電機,其額定電壓為380V,功率因數為0.75。經計算可知,選用日本產的智能功率模塊PM50RSA120可以滿足系統要求。該功率模塊集功率開關和驅動電路、制動電路于一體,并內置過電流、短路、欠電壓和過熱保護以及報警輸出,是一種高性能的功率開關器件。

4)位置檢測電路位置檢測電路是執行機構的重要組成部分,它的功能是提供準確的位置信號。關鍵問題是位置傳感器的選型。在傳統的電動執行機構中多采用繞線電位器、差動變壓器、導電塑料電位器等。繞線電位器壽命短被淘汰。差動變壓器由于線性區太短和溫度特性不理想而受到限制。導電塑料電位器目前較為流行,但它是有觸點的,壽命也不可能很長,精度也不高。筆者采用的位置傳感器為脈沖數字式傳感器,這種傳感器是無觸點的,且具有精度高、無線性區限制、穩定性高、無溫度限制等特點。

5)電壓、電流及檢測檢測電壓、電流主要是為了計算電機的力矩,以及變頻器輸出回路短路、斷相保護和逆變模塊故障診斷。由于變頻器輸出的電流和電壓的頻率范圍為0~50Hz,采用常規的電流、電壓互感器無法滿足要求。為了快速反映出電流的大小,采用霍爾型電流互感器檢測IPM輸出的三相電流,對于IPM輸出電壓的檢測采用分壓電路。如圖2-2所示。

6)通訊接口為了實現計算機聯網和遠程控制,選用MAX232作為系統的串行通訊接口,MAX232內部有兩個完全相同的電平轉換電路,可以把8031串行口輸出的TTL電平轉換為RS-232標準電平,把其它微機送來的RS-232標準電平轉換成TTL電平給8031,實現單片機與其它微機間的通訊。

7)時鐘電路時鐘電路主要用來提供采樣與控制周期、速度計算時所需要的時間以及日歷。文中選用時鐘電路DS12887。DS12887內部有114字節的用戶非易失性RAM,可用來存入需長期保存的數據。

8)液晶顯示單元為了實現人機對話功能,選用MGLS12832液晶顯示模塊組成顯示電路。采用組態顯示方式。通過菜單選擇,可分別對閥門、力矩、限位、電機、通訊和參數等信號進行設置或調試。并采用文字和圖形相結合的方式,顯示直觀、清晰。

9)程序出格自恢復電路為了保證在強干擾下程序出格時系統能夠自動地恢復正常,選用MAX705組成程序出格自恢復電路,監視程序運行。如圖2-3所示,該電路由MAX705、與非門及微分電路組成。

工作原理為:一旦程序出格,WDO由高變低,由于微分電路的作用,由“與非”門輸入引腳2變為高電平,引腳2電平的這種變化使“與非”門輸出一個正脈沖,使單片機產生一次復位,復位結束后,又由程序通過P1.0口向MAX705的WDI引腳發正脈沖,使WDO引腳回到高電平,程序出格自恢復電路繼續監視程序運行。閥位及速度控制原理

閥位及速度控制原理框圖如圖3-1所示。

采用雙環控制方案,其中內環為速度環,外環為位置環。速度環主要將當前速度與速度給定發生器送來的設定速度相比較,通過速度調節器改變PWM波發生器載波頻率,實現電機的轉速調節。速度調節器采用模糊神經網絡控制算法(具體內容另文敘述)。

外環主要根據當前位置速度的設定,通過速度給定發生器向內環提供速度的設定值。由于大流量閥執行機構在運行過程中存在加速、勻速、減速等階段。各階段的時間長短、加速度的大小、在何位置開始勻速或減速均與給定位置、當前位置以及運行速度有關。速度給定發生器的工作原理為:通過比較實際閥位與給定閥位,當二者不相等時,以恒定加速度加速,減速點根據當前速度、閥位值、閥位給定值的大小計算得來。

執行機構各階段運行速度的計算原理

圖3-2為執行機構的典型運行速度圖,它由若干段變化速率不同的折線組成。將曲線上速率開始發生改變的那一點稱為起始段點,相應的時間稱為段起始時間,如圖3-2中的t(i)(i=0,1,2,……),相應的速度稱為段起始速度,如圖3-2所示v(i)(i=0,1,2,…)。

設第i段速度的變化速率為ki,則有:

式中:Δv為兩段點之間的速度變化值,Δv=vi+1-vi;

Δt為兩段之間的時間,Δt=ti+1-ti。

顯然,當ki=0時為恒速段,ki>0時為升速段,ki<0時為減速段。任意時刻的速度給定值為:

Ts為采樣周期。

變化速率ki的取值由給定位置、當前位置以及運行速度的大小確定。

4關鍵技術問題的解決

該電動執行機構采用了最新的變頻調速技術,電機驅動功率小于5.5kW。用戶可根據需要設定力矩特性,根據控制的閥設定速度,速度分多轉式、直行程、角行程3種方式??刂葡到y由閥位給定和閥位反饋信號構成的閉環系統,控制特性視運行方式、速度而定,并具有自動過流保護、過載保護、超壓、欠壓、過熱、缺相、堵轉等保護功能。

該執行機構解決的關鍵性技術問題主要有:

1)閥門柔性開關柔性開關主要是為了當閥關閉或全開時,保證閥門不卡死與損傷。執行機構內部的微處理器根據測得的變頻器輸出電壓和電流,通過精確計算,得出其輸出力矩。一旦輸出力矩達到或大于設定的力矩,自動降低速度,以避免閥門內部過度的撞擊,從而達到最優關閉,實現過力矩保護。

2)閥位的極限位置判斷閥位的極限位置是指全開和全關位置。在傳統執行機構中,該位置的檢測是通過機械式限位開關獲得的。機械式限位開關精度低,在運行中易松動,可靠性差。在文中,電動執行機構極限位置通過檢測位置信號的增量獲得。其原理是,單片機將本次檢測的位置信號與上次檢測的信號相比較,如果未發生變化或變化較小,即認為己達到極限位置,立即切斷異步電機的供電電源,保證閥門的安全關閉或全開。省去了機械式限位開關,無需在調試時對其進行復雜的調整。

3)電機保護的實現為了防止電機因過熱而燒毀,單片機通過溫度傳感器連續檢測電機的實際運行溫度,如果溫度傳感器檢測到電機溫度過高,自動切斷供電電源。溫度傳感器內置于電機內部。

4)準確定位傳統的電動執行機構在異步電機通電后會很快達到其額定動作速度,當接近停止位置時,電機斷電后,由于機械慣性,其閥門不可能立即停下來,會出現不同程度的超程,這一超程通常采用控制電機反向轉動來校正。機電一體化的大流量電動執行機構根據當前位置與給定位置的差值以及運行速度的大小超前確定減速點的位置及減速段變化速率ki,使閥門在較低的速度下實現精確的微調和定位,從而將超程降到最低。

5)模擬信號的隔離。

對于變頻器的直流電壓以及輸出的三相電壓,它們之間的地址不一致,存在著較高的共模電壓,為了保證系統的安全性,必須將它們彼此相互隔離。采用LM358和4N25組成了隔離線性放大電路。如圖4-1所示,采用±15V和±12V兩組獨立的正負電源。若運放A的反相端電位由于擾動而正向偏離虛地,則運放A輸出端的電位將降低,因而光電耦合器的發光強度將增強,則使其集射極電壓減小,最后使運放A反相端的電位降低,回到正常狀態。若A的反相端電位負向偏離虛地,也可以重回到正常狀態。從而增強了系統的抗干擾性。

5結束語

該執行機構集微機技術和執行器技術于一體,是一種新型的終端控制單元,其電機是通過內部集成的一體化變頻器來控制,因此,同一臺智能執行機構可以在一定范圍內具有不同的運行速度和關斷力矩。該智能執行機構采用了液晶顯示技術,它利用內置的液晶顯示板,不僅可以顯示閥門的開、關狀態和正常運行時閥門的開度,還可以通過菜單選擇運行參數設定,當系統出現故障時,能顯示出故障信息。總之,該執行機構集測量、決斷、執行3種功能于一體,順應了電動執行機構的發展趨勢,它的研制成功給電動執行機構的研究開發提供了新的思路。

參考文獻

[1]鄧兵,等.數字閥門電動執行機構[J].自動化儀表,2001(1).

[2]LiuJianhou.Theresearchonreliabilityandenvironmentadaptabilityofelectriccontrolvalveusedinunclearpowerstation[J].MaintainabilityandSafety,vol.2,Dalian,China,28-31August2001.

[3]AntsaklisPJ.Intelligenceandlearning[J].IEEEControlSystMag,1995(15).

篇5

(1)滾筒體的三維模型本文設計的滾筒體直徑D=630mm,滾筒體長度L=1800mm。由于設計的滾筒體直徑較大,因此選取厚度為16mm。滾筒體采用Q235A型鋼板焊接而成,彈性模量2.1×105MPa,泊松比μ=0.3,密度為77kg/m3,其許用應力為65MPa。根據以上設計參數,使用三維軟件SolidWorks建立外裝式電動滾筒滾筒體的三維實體模型。最終完成電動滾筒滾筒體三維實體模型。

(2)滾筒體有限元模型的邊界條件有限元分析中的邊界條件分為力約束和位移約束。本文只對滾筒體進行模態分析,所以只有位移約束。電動滾筒滾筒體可以沿著軸向旋轉(繞著軸旋轉),定義的約束必須要限制滾筒體其他5個自由度。所以要在2個端蓋的軸孔內表面設置鉸鏈約束,約束它3個方向的平動和2個方向的轉動。

(3)滾筒體的網格劃分SolidWorksSimulation提供了3種網格劃分方式:四面體實體單元、三角形殼體單元和混合網格,本文采用三角形殼體單元作為劃分單元。整個滾筒體模型共生成15623個節點,劃分為13682個單元如圖3所示。

(4)滾筒體的模態分析模態分析用于分析結構的振動特性,即確定結構的固有頻率和振型。SolidWorksSimulation是一款基于有限元技術的設計分析軟件,可以進行模態分析。由有限元法進行求解分析,得到滾筒體的前5階固有振動頻率和振型圖如圖4所示。其中第1階模態頻率0.0024595Hz是剛體的轉動模態,沒有實際參考意義;第2階模態頻率1369Hz,節點最大變形位移214.7mm,振型為扭曲形式;第3階模態頻率2043.1Hz,節點最大變形位移245.3mm,振型為彎曲形式;第4階模態頻率2043.9Hz,節點最大變形位移246.1mm,振型為彎曲形式;第5階模態頻率2048Hz,節點最大變形位移383.2mm,振型為彎曲形式。由振型圖可以看出,隨著頻率的增加,滾筒體以彎曲振動為主且變形越來越大,最危險節點的變形位移也越來越大且總是在滾筒體的中心位置。在設計筒體時,可以通過加厚筒體或改善支承條件來抑制其變形。

在一定輸入轉速條件下,各齒輪的齒數決定了齒輪的嚙合頻率。設計滾筒內部的封閉行星齒輪傳動機構時,確定各齒輪齒數及其他參數,要避開滾筒體的振動頻率,以免發生共振。

2結語

篇6

關鍵詞:高壓斷路器電氣機械聯動可靠性比較

1引言

高壓斷路器在電力系統中起控制和保護作用,其性能的可靠與否關系到電力系統的安全、穩定運行。為降低非全相分合閘情況出現,有的場所需要用三相機械聯動。有的用戶更直觀地判斷三相機械聯動斷路器可靠性遠大于電氣聯動的斷路器,但實際情況卻需要具體分析。

2斷路器故障概率統計

據CIGRE于1988~1991年對1978~1991年投運的66kV及以上單壓式SF6斷路器進行的可靠性調查,共70708臺年,因操動機構故障造成的失效占總失效數的64.8%,其中二次電氣控制和輔助回路故障占21%,操動機構機械故障占43.8%。

1989~1997年全國電力系統110、220、330kV和500kVSF6,斷路器操動機構部分故障統計見表1。操動機構包括2個部分,一是機械傳動部分;二是包括控制機械部分合、分操作的控制回路和輔助回路,如接線端子、接觸器、輔助開關、分合閘線圈、微動開關、馬達、氣體繼電器等二次元件。共統計故障458次,機構故障304次。

表11989~1997年全國電力系統110、220、330kV和500kVSF6斷路器操作機構部分故障統計

上述統計資料表明,目前斷路器主要故障為操動機構故障,且機械故障占有較大比例。

CIGRE報告WGl3.06,故障按操動機構的類型來劃分的情況見表2。

表2不同操動機構故障情況表

從中可以看出彈簧操動機構故障次數遠遠低于液壓及氣動機構,其可靠性相對較高。為避免機構類型不同對分析結果的影響,本文均選用彈簧機構的SF6高壓斷路器。

3電氣聯動與機械聯動機構故障率分析

3.1電氣及機械聯動

三相電氣聯動的高壓斷路器一般采用三個獨立操動機構,通過匯控箱使機構之間通過電氣聯接來實現三相聯動,各相機構傳動輸出軸直接與極柱相連;在保護裝置上,采用三相位置不一致繼電器啟動跳閘。

三相機械聯動的高壓斷路器—般采用一個操動機構,斷路器三個極柱與操動機構之間通過操作桿聯接。

按SDJ5-85《高壓配電裝置設計技術規程》,屋外配電裝置的相間距離不低于該規程中A2的要求,即110J、220J、330J、500J分別為1000mm、2000mm、2800mm、4300mm。

3.2故障可能性分析

對三相電氣、機械聯動操動機構故障發生的可能性,按表3進行分析。

表3發生重大事故的可能性

注:(*)彈簧機構和極柱之間為直接連接

對絕緣擊穿和斷路器無法開斷或操作這兩種故障,電氣或機械聯動聽發生的機率應是相同的。區別在于彈簧機構內部的機械故障的不同以及彈簧機構與本體之間的機械故障的不同,即表中的P3和P50。

3.3故障分析

3.3.1機構與本體之間出現故障的可能

與電氣聯動相比,機械聯動的斷路器安裝要困難得多。它需要在三極之間進行準確的調整,才能確保三極之間的機械聯接在允許誤差范圍之內并保證其同期性。一般情況下,由于現場施工條件比較簡陋,斷路器基礎及支架尺寸也會有偏差,再加上施工人員技術素質不同,很難滿足安裝的要求。從表1中也可以看出,機械部分變形損壞在機構部分故障中所占的比例達到23%,如果扣除液壓和氣動機構類型的影響,這種比例會更大,這也間接反映了現場安裝調試難度加大,會造成運行后故障的增多。電氣聯動操動機構由于機構與斷路器極柱直接連接,出現該故障的機率就少多了。

其次,對于機械聯動機構,各極上的力和能量的傳遞是不一樣的,離機構最近的一極將承受比較大的機械應力;各極之間的振動也不一樣,離機構最近的一極,其振動程度最嚴重。此外,由于大氣溫度的變化,金屬會熱脹冷縮,連桿長度的變化會使斷路器的分合閘時的位置發生改變,而這種改變的后果是嚴重的。

最后,機械連桿內部的應力會隨著相間距離的變化而增大。一般與dA成正比(1≤A≤2)。線性變形時(如變形或伸長),A=1;非線性變形時(如:膨脹),A=2。試驗表明,當相間距離小于2.5m時,應力還處在可接受的范圍內。但是,當相間距離超過2.5m時,應力和變形就會對斷路器的可靠性和穩定性產生影響。并且,由于SF6斷路器開距要遠小于少油斷路器,因此機械傳動上的微小差異,即對斷路器性能造成很大影響。這也是世界上所有斷路器制造商為什么不愿意生產300kv及以上的三相機械聯動斷路器最重要的原因之一。

3.3.2機構本身故障可能性

從表2可以看出,彈簧機構斷路器的故障次數要遠低于液壓和氣動機構斷路器的故障次數。但三相聯動機構與電氣聯動機構相比,前者所需操作功比后者要大的多,產生的應力和振動就大,對機構的破壞就大。當然,對各制造商來說,其產品性能與其制造質量、工藝水平有很大關系,用戶可以選用年平均故障率低、質量可靠的制造商的產品以降低故障率,但總的說三相聯動機構故障率P4遠大于電氣聯動機構故障率P3。

4小結

三相機械聯動故障率大于三相電氣聯動機構,在沒有特殊要求的情況下,應盡可能選用電氣聯動機構的斷路器;1l0kV及以下斷路器相間距離一般小于2000mm,采用三相機械聯動的方式比較適宜;220kV及以上斷路器,相間距離一般為3000~4000mm,采用三相電氣聯動機構比較適宜。

參考文獻

[1]CRHeising,ALJanssen,WLanz,etal.Summa-ryofCIGRE13.06WorkingGroupWorldWideRelia-bilityDataandMaintenanceCostDataonHighVoltageCircuit/peakersAbove63kV[A].IndustryApplica-tionsSocietyAnnualMeeting[C],ConferenceRecordofIEEE,1994.

篇7

隨著移動通信技術的發展,任何移動節點都可以與IP核心網進行無縫的連接,從而形成無線網絡。就目前來看,數據連接的方法多種多樣,如:WLAN、藍牙和GSM等。其中在移動無線網絡中的實現過程中,移動IP技術最為關鍵。移動IP一般包括移動節點、歸屬和外埠,其中歸屬和外埠又稱為本地與外地,統稱為移動。移動節點(mobilenode)指的是在移動環境下工作的一些安有移動信息接收和無線網卡的計算機通訊設備,由此這些設備具備了移動通訊和無線通訊的功能。簡單點的說,就是這些設備具有了長久IP地址的移動終端。歸屬(homeagent)又稱作本地,也就是說這是在本地鏈路上的路由器。同理,外埠(foreignagent)又稱外地,就是在外部鏈路上的路由器。移動IP的原理如下:首先移動節點歸屬是信息的入口,相比較而言,外埠就是信息的出口。一般先經過歸屬進行數據包的封裝,然后傳達給外埠。當外埠接收到數據包之后,進行數據的解開并將其傳遞給移動節點。一般來說,數據包在隧道內時,路由環會將它重新放回到隧道的入口處。由此,需要在數據包上加封IP的報頭。一旦歸屬將廣播包傳遞到了移動節點那里,就需要對其進行重新封裝。值得注意的是,歸屬向移動節點進行傳送時的本地地址是里層隧道,相反的,歸屬往移動節點轉交時的地址是外層隧道。當解封的IP報頭獲得得到了數據之后,就會報告移動節點,綜上,這就是節點向移動節點發送數據的全過程。

2移動通訊中移動IP節點技術的實現

2.1移動IP節點的關鍵技術

在移動通訊中,移動IP節點技術實現的需要依靠的技術有很多,其中關鍵的技術就是隧道技術(Tunneling)。隧道技術的種類包括IP的IP封裝、IP的最小封裝和通用路由封裝。RFC2004是這樣定義IP的最小封裝的:IP的最小封裝是一種可以選擇的隧道,其主要目的是為了能夠減少實現隧道所需要的額外字節數,這個過程需要去掉IP的IP封裝中的內層IP報頭和外層IP的報頭的冗余部分才能實現。

2.2移動IP節點的工作過程

通常情況下,移動IP的工作過程分為三個階段:發現、注冊和數據包傳送。在發現階段主要是由本地和外地進行周期性地廣播消息,這樣鏈路上的所有節點才能夠接收到這個消息,并對其進行檢查且決定它的連接方式是本地鏈路還是漫游鏈路。一般情況下,如果是漫游鏈路,移動節點就可以從廣播消息中得到需要轉交的地址。與此同時,移動節點依據IP報頭來由此判斷自己所處的位置,如果原IP地址的網絡前綴和移動節點的本地地址的網絡前綴相同,那么就可以確定移動節點處于本地鏈路上。由此,移動節點可以根據從廣播消息中得到ICMP路由器廣播部分的生存區域,并由這個階段去通知移動節點從同一個處接收到一個廣播的平均時間。

2.3移動IP節點的工作方式

移動IP節點主要有5個方面的基本工作方式,包括搜索、注冊、注銷、接受和發送數據包,接下來將對這五個方面進行詳細的分析。

2.2.1搜索

搜索是指在保證移動節點能夠正常運作的前提下,采用搜索的方式進行移動節點的尋找,從而能夠得出自己所在的位置。移動IP節點在這個過程中完成三個功能:首先是分析出自己當前的位置是位于本地鏈路上還是外地鏈路上;其次,檢查自己是否已經切換到了鏈路上;最后,如果自己已經位于外地鏈路上了,就可以獲取外地鏈路上的轉交地址。一般來說,在這個過程中需要由搜索完成兩條簡單的消息,分別是廣播消息和請求消息。通常,本地會通過廣播消息來進行移動節點功能的宣布,即當節點處于鏈路上時,才能夠成為本地的服務器,從而廣播消息,確定鏈路是否存在。這時就會出現兩種結果,當存在,移動節點就可以在廣播消息時獲得本地服務器的地址,相反的,當移動節點不能夠廣播消息時,才可以發送請求消息。由于請求消息希望能夠發送廣播消息,在一定的時間內,移動節點就會通過轉換鏈路來發送廣播。由此,這種請求消息的選擇是十分必要的。

2.2.2注冊、注銷制度

當完成搜索過程之后,才可以進行移動IP的注冊。這時,雖然移動節點已經明確了自己的位置,但是注冊是一個必不可少的環節。一般來說,注冊的時間比較長,移動節點卻不能移動自己的位置,而且當注冊過期時,移動節點需要重新進行注冊。注冊的過程是要先將從外地鏈路上獲得的轉交地址移交給歸屬,使得過期的注冊重新生效,然后等到重新回到本地鏈路上時,就可以進行注銷操作了。

2.2.3傳遞數據包的選路

篇8

1.1變電站電氣自動化技術應用的現狀。電氣自動化技術是通過計算機、信號處理以及電子通信等技術,對變電站二次側的電氣設備進行自動監測,這種自動監測可以實時的反映變電站電氣設備的運行情況,當系統故障時可以及時的發出故障信號,工作人員可以在第一時間準確地對故障進行處理,從而保證變電站安全可靠的運行。變電站自動化技術還可以提供原始數據幫助工作人員對電氣設備進行檢修和維護。電氣自動化技術對變電站的安全運行具有非常重要的作用,所以電氣自動化技術在變電站建設中得到了廣泛應用。

1.2變電站電氣自動化技術未來的發展趨勢??茖W技術的發展是非常迅速的,數字化已成為現實,變電站電氣自動化技術也將迎來新的局面。隨著計算機技術、信號處理技術、網絡技術和通信技術等科學技術的發展和完善,與電氣自動化技術的融合一定會在不久的將來實現,有了這些高端科學技術的融入,電氣自動化技術一定具有大幅度水平的提高。這樣就可以更加科學合理的對變電站進行設計和規劃,同時也可以大大提高變電站運行的自動化水平,從而使變電站系統運行時能夠快速的自動處理各種問題,使變電站的運行更為有效和安全。

2電氣自動化技術在變電站中的應用

2.1電氣自動化技術應用于變電站計算機監控系統。現如今計算機技術已經發展到了相當高的水平,社會各行各業都必須要用到計算機技術。計算機技術對變電站運行具有非常重要的作用,它可以實現對變電站系統內各電氣設備的運行監控、監測,有利于提高變電站運行的安全性。通過與網絡技術和通信技術的融合,電氣自動化技術應用于變電站的計算機監測系統可以有效的擴大變電站計算機監控系統的范圍。與此同時,還可以及時地對變電站運行中出現的各種問題和故障做出相應的處理。

2.2電氣自動化技術應用于變電站中等電位連接。等電位連接就是將電氣結構中,相適應的電氣設備間的導電部位進行連接,這樣做可以保證變電站運行時電源充足。等電位連接對于變電站的運行、維護的安全性具有重要的作用,它可以有效避免變電安全問題。所以將電氣自動化技術應用到變電站等電位連接非常重要。

2.3電氣自動化技術應用于變電站計算機保護。電氣自動化技術應用于變電站中的一個主要的功能是計算機保護功能。各電氣設備通過信號處理技術,將各自運行的狀態信息通過通信技術傳遞給計算機,通過計算機對變電站中的電氣設備進行監測和保護,可以保護變壓器、線路等。當變電站運行發生故障時,計算機對接收到的故障信息進行分析,并發出相應的故障處理命令,由相應的電氣設備執行命令,處理故障。這樣就起到了很好的保護作用,所以將電氣自動化技術應用到變電站計算機保護中是至關重要的,可以很大程度上提高變電站運行的安全性。

2.4電氣自動化技術應用于變電站自行診斷。變電站的自行診斷功能是以電氣自動化技術、計算機技術、網絡技術和通信技術等為基礎,通過對變電站各項運行數據的實時監測、分析對比,迅速找到故障點,并及時自行修復故障。電氣自動化技術應用于變電站自行診斷不僅可以降低發生故障的概率,減少了工作人員的工作量,還可以有效提高變電站系統的運行效率。

2.5電氣自動化技術應用于變電站數據的采集和處理。變電站的數據采集是變電站自動化系統中非常重要的環節,是電氣自動化技術應用于變電站的主要表現。變電站運行中的數字信號和模擬信號是變電站運行數據的基本形式,可以表現變電站運行的各項數據,比如脈沖數據、狀態數據等。變電站的數據處理指的是對各項數據的分析對比,來發出處理命令,比如對故障跳閘的處理、斷路器狀態的處理、故障警告的處理和隔離開關的狀態處理等。電氣自動化技術中的光電隔離方式和通信方式是采集和處理數據的主要方式。

2.6電氣自動化技術應用于變電站記錄故障數據。電氣自動化技術的另一個重要功能是記錄設備的故障數據,記錄設備的故障數據主要是為了監控系統分析故障。當故障發生時,記錄下當時的開關閉合閘狀態和相應的保護動作的狀態。通過對故障時各項數據的分析,可以在以后的檢修和維護工作中做出正確的改進。

篇9

1.1發電效率明顯提升

社會的不斷發展以及人們對生產及生活要求的不斷提高,就導致了對電能的需求量會逐漸的增加,這為我國的火力發電工作帶來了一定挑戰,提高火力發電效率已經成為社會各界共同關注的問題。而原有傳統的火力發電設備多數都需要較多的人員進行實際操作及控制,工作效率低,而將電氣自動化技術應用于火力發電,可以使火力發電實現自動化控制,提高發電效率及電能產昌,更好滿足社會需求。

1.2發電成本顯著降低

用于火力發電的原材料通常都是煤炭及石油等可燃原料,原有的火力發電技術存在諸多問題,使得原材料的燃燒率不高,不能夠充分燃燒而釋放出全部的能量,這使得發電效果平平,投入了較多的原料卻沒有得到預期的電量,也就增加了發電成本。而將電氣自動化技術應用到火力發電中,就可以對各種燃燒方法進行自動化控制,從而實現燃料的充分燃燒,使得燃料的浪費率大為降低,也就相應的節約了發電成本。

1.3資源得到最優化配置

在火力發電的過程中,所需要的是所有的資源是否能夠全面合理的得以有效的利用,其結果對于電廠的發電效率有著直接的影響,過去較為滯后的發電技術,對于電力設備和原材料以及工作人員都沒有進行更好更全面的加以利用,人員和原材料的浪費,設備發生了故障沒有得到及時的發現和維護,對于火力發電在一定程度上都造成了損失。然而,自從電氣自動化技術實現之后,對于設備運行中出現的障礙,能夠得以有效的及早發現,在操作模式方面可以實現人機操作,時期資源在使用的過程中,能夠將其最大的可利用價值給予充分發揮。

2火力發電系統應用電氣自動化技術的可行性和必要性

電氣自動化技術自誕生以來,在各行各業中都取得了十分驕人的應用成績,其在數據采集及管理、運行控制等多個方面都取得了不錯的效果。在火力發電系統中運用了電氣自動化技術在對交流電進行采樣、測量和監控的同時,還可以在新型計算機技術的協助下與工業輸電之間的電網進行創新性和性能性革新。火力發電廠原來使用的火力發電技術中各系統與集散控制系統之間的數據傳送量有限,加上工作人員無法周全的觀察到所有的參數信息變化,這就導致了整個發電運行系統我們所能掌握的信息量較少,而且也導致了電力操作人員的操作內容不輕松和不能及時的發現運行裝置系統中存在的問題,無法把握故障的發生。但是,對于電氣自動化系統的火力發電,電力設備的自動化水平顯著提高,在建立的火力發電的通信網絡上傳送的數據信號明顯增多數倍。對于電力操作人員來說,很大程度上降低了操作難度和發現設備故障的難度。

3電氣自動化在火力發電系統中各方面的應用實例

3.1實現爐機組一體化

在火力發電中運用電氣自動化技術,就實現了火力發電廠的機、爐、電運行系統一體化的目標。這樣整個系統的數據和運行信息就靠機、電、爐這個一體來監控運行和匯總分析。這樣的一體化就更大的實現了火電機組的潛力,并且縮小了控制層的規模,簡化了發電系統的監控系統,因此,也更大程度的降低了發電的生產成本。另一方面,爐機組這一統一單元實現了火力發電信息采集的便利化,更能提高火力發電廠的電廠信息管理系統的工作效率,統一了電網的運行和管理,提高了電網的工作效率,使電網保持在最優化的運行狀態。

3.2實現設備的自動化檢測

我國火力發電廠傳統的系統控制及保護功能等只局限于電力運行系統內,是為了電力運行超過一定限定數值后,便會出現跳閘及報警的現象。但是現代化的電氣自動化技術,可以運用計算機技術來進行檢測,并實現對整個電力運行系統的有效控制,其不僅可以完成對發電系統的監控及診斷檢測工作,同時還能夠提前預測出可能發生的安全事故等,不是等到事故真的發生了現進行報警等,這樣的工作方式有效的避免了電力安全事故的發生,降低了發電廠的經濟損失。

3.3實現了通用網絡結構的構建

在電氣自動化系統的成功運行中,通用網絡結構的構建起著至關重要的作用。通用網絡結構實現了辦公室自動化到整個系統的電氣設備的運轉自動化,完成了電廠的管理人員和操作人員對整個電廠設備的實時觀測和監督,并且保證了控制系統、管理系統和計算機控制系統。

4結語

篇10

風電機組中發生共振的現象時有發生,為了避免機組發生較大振動,需對塔筒以及整個風力發電機軸系進行共振裕度分析。塔筒為細長結構,可采用梁模型進行簡化處理得到塔筒的1、2階彎曲頻率。軸系計算中,重點關心了機組的1、2階扭轉自振頻率。風力發電機組的激振源較多,主要有轉頻、電網頻率以及葉片通過頻率,振動特性分析較為復雜。通過機組工作轉速與固有頻率的CAMPBELL分析以及機組的共振裕度分析表,從而可得出結論,該機組動力特性良好。塔筒為細長梁模型,一階彎曲固有頻率一般介于1倍工作轉頻至3倍工作轉頻之間,因此塔筒的頻率必須首先保證避免共振。同時發電機部件由于激振來源較多,主要來自轉頻、電網以及葉片通過頻率等,振動特性分析較為復雜。對于機組振動特性的分析,可以通過機組CAMPBELL分析.

2強度優化設計

為提高風電產品的市場競爭力,機組在保證性能的基礎上,要具備成本優勢以及開發效率優勢?;谝陨夏康?,優化設計的方向和目標大致分為以下幾個方面。

2.1以降低重量為目標的多參數強度優化設計

降低重量主要是要通過減小產品的尺寸來實現。在保證產品的剛強度各項性能指標滿足要求的前提下進行,即優化之后進行。許用應力值:σ≤[σ]疲勞損傷因子:D≤1,D<0.5(焊縫)

2.2基于工藝成本控制的多目標強度優化設計

對于產品某些加工部位的表面光潔度可進行優化設計,對產品成型工藝可進行降本優化改進。例如,在保證疲勞可靠性的前提下,由原來的表面光潔度2.5μm增至12.5μm,顯然降低了加工的難度,節約了加工成本。同樣,由原來的鍛造成型改為鑄造成型,同樣可降低機組的制造成本,并滿足批量產生的需求。在工藝優化設計中,同樣需保證結構的抗疲勞性能,需滿足以下疲勞性能指標:疲勞損傷因子:D<1,D<0.5(焊縫位置)。

2.3整體提高產品性能的全新優化設計

上述2種優化方式與方法,參數的調整系統性不強。借助計算軟件的先進優化算法,例如遺傳算法等,可以對結構的重量、疲勞可靠性等進行系統的優化分析。

2.4基于軟件設計開發平臺,自主編程定制優化

設計流程,縮短開發周期為了能夠滿足批量產品的設計需求,在大量分析計算經驗積累的基礎上,對于某些特定問題,借助軟件的設計開發平臺,開發全參數的強度分析設計軟件。

3風電機組中幾類特殊難點問題

3.1螺栓連接強度分析計算

風機和發電機部件中,螺栓連接及焊縫連接是最常用的2種連接方式。對于此類問題的靜強度與疲勞強度分析,考核標準以歐洲的標準體系British、GermanorDNV或美國的ASME標準為主。對于塔筒分段的鏈接螺栓,有學者提出了采用分段線性模擬螺栓在不同階段受力的方法,該方法簡單易行。對于塔筒與主機架、主機架與發電機主軸、輪轂與發電機等部位的連接螺栓,由于載荷較為復雜,采用上述經驗公式已不能滿足要求,需要借助FEA分析方法。結合載荷譜,通過計算最終得到螺栓的疲勞損傷值。

3.2焊縫連接強度分析計算

關于焊縫疲勞問題,國際焊接協會IIW-2003、歐洲標準Eurocode3part1.9、英國標準BS7608、挪威船級社DNV的相關規范,以及美國機械工程協會ASME規范,均給出了相應的計算方法。東方電機一般采用國際焊接協會中的熱點應力法來分析焊縫疲勞。首先,在FEA分析模型中建立熱點應力的參考點,單位載荷作用下,得到2個參考應力點的應力分量,然后通過外推公式,最終得到熱點位置的應力分量。通過查找和選取相應的疲勞等級DC,計算之后得到焊縫損傷。若損傷因子D<0.5,可滿足抗疲勞的要求。

3.3傳動鏈疲勞分析難點

傳動鏈的疲勞問題較為復雜。主軸軸承的裝配,使得載荷在該位置的傳遞出現了較大的非線性因素耦合效應,主要來自于3個方面:

(1)軸承軸向及徑向緊量裝配。

(2)軸承內部滾子與滾道的接觸。

(3)螺栓預緊作用的非線性效應。這使得FEA模擬仿真結果具有較大的不確定性,成功解決此類問題的難點在于準確模擬滾子與滾道的接觸應力傳遞。

4結語