發電技術論文范文10篇
時間:2024-05-06 07:31:24
導語:這里是公務員之家根據多年的文秘經驗,為你推薦的十篇發電技術論文范文,還可以咨詢客服老師獲取更多原創文章,歡迎參考。
燃料電池發電技術研究論文
【摘要】本文概述了燃料電池的工作特點和原理,介紹了發電系統的組成、國內外的研究現狀,對我國應用燃料電池發電的資源條件進行了評估,展望了這一技術在電力系統的應用前景、將對電力系統產生的重要影響,它將使傳統的電力系統產生重大的變革,它會使電力系統更加安全、經濟。最后提出了發展燃料電池發電的具體建議。
1.引言能源是經濟發展的基礎,沒有能源工業的發展就沒有現代文明。人類為了更有效地利用能源一直在進行著不懈的努力。歷史上利用能源的方式有過多次革命性的變革,從原始的蒸汽機到汽輪機、高壓汽輪機、內燃機、燃氣輪機,每一次能源利用方式的變革都極大地推進了現代文明的發展。隨著現代文明的發展,人們逐漸認識到傳統的能源利用方式有兩大弊病。一是儲存于燃料中的化學能必需首先轉變成熱能后才能被轉變成機械能或電能,受卡諾循環及現代材料的限制,在機端所獲得的效率只有33~35%,一半以上的能量白白地損失掉了;二是傳統的能源利用方式給今天人類的生活環境造成了巨量的廢水、廢氣、廢渣、廢熱和噪聲的污染。對于發電行業來說,雖然采用的技術在不斷地升級,如開發出了超高壓、超臨界、超超臨界機組,開發出了流化床燃燒和整體氣化聯合循環發電技術,但這種努力的結果是:機組規模巨大、超高壓遠距離輸電、投資上升,到用戶的綜合能源效率仍然只有35%左右,大規模的污染仍然沒有得到根本解決。多年來人們一直在努力尋找既有較高的能源利用效率又不污染環境的能源利用方式。這就是燃料電池發電技術。1839年英國的Grove發明了燃料電池,并用這種以鉑黑為電極催化劑的簡單的氫氧燃料電池點亮了倫敦講演廳的照明燈。1889年Mood和Langer首先采用了燃料電池這一名稱,并獲得200mA/m2電流密度。由于發電機和電極過程動力學的研究未能跟上,燃料電池的研究直到20世紀50年代才有了實質性的進展,英國劍橋大學的Bacon用高壓氫氧制成了具有實用功率水平的燃料電池。60年代,這種電池成功地應用于阿波羅(Appollo)登月飛船。從60年代開始,氫氧燃料電池廣泛應用于宇航領域,同時,兆瓦級的磷酸燃料電池也研制成功。從80年代開始,各種小功率電池在宇航、軍事、交通等各個領域中得到應用。燃料電池是一種將儲存在燃料和氧化劑中的化學能,直接轉化為電能的裝置。當源源不斷地從外部向燃料電池供給燃料和氧化劑時,它可以連續發電。依據電解質的不同,燃料電池分為堿性燃料電池(AFC)、磷酸型燃料電池(PAFC)、熔融碳酸鹽燃料電池(MCFC)、固體氧化物燃料電池(SOFC)及質子交換膜燃料電池(PEMFC)等。燃料電池不受卡諾循環限制,能量轉換效率高,潔凈、無污染、噪聲低,模塊結構、積木性強、比功率高,既可以集中供電,也適合分散供電。大型電站,火力發電由于機組的規模足夠大才能獲得令人滿意的效率,但裝有巨型機組的發電廠又受各種條件的限制不能貼進用戶,因此只好集中發電由電網輸送給用戶。但是機組大了其發電的靈活性又不能適應戶戶的需要,電網隨用戶的用電負荷變化有時呈現為高峰,有時則呈現為低谷。為了適應用電負荷的變化只好備用一部分機組或修建抽水蓄能電站來應急,這在總體上都是以犧牲電網的效益為代價的。傳統的火力發電站的燃燒能量大約有近70%要消耗在鍋爐和汽輪發電機這些龐大的設備上,燃燒時還會排放大量的有害物質。而使用燃料電池發電,是將燃料的化學能直接轉換為電能,不需要進行燃燒,沒有轉動部件,理論上能量轉換率為100%,裝置無論大小實際發電效率可達40%~60%,可以實現直接進入企業、飯店、賓館、家庭實現熱電聯產聯用,沒有輸電輸熱損失,綜合能源效率可達80%,裝置為集木式結構,容量可小到只為手機供電、大到和目前的火力發電廠相比,非常靈活。燃料電池被稱為是繼水力、火力、核能之后第四電裝置和替代內燃機的動力裝置。國際能源界預測,燃料電池是21世紀最有吸引力的發電方法之一。我國人均能源資源貧乏,在目前電網由主要缺少電量轉變為主要缺少系統備用容量、調峰能力、電網建設滯后和傳統的發電方式污染嚴重的情況下,研究和開發微型化燃料電池發電具有重要意義,這種發電方式與傳統的大型機組、大電網相結合將給我國帶來巨大的經濟效益。2.燃料電池的特點與原理由于燃料電池能將燃料的化學能直接轉化為電能,因此,它沒有像通常的火力發電機那樣通過鍋爐、汽輪機、發電機的能量形態變化,可以避免中間的轉換的損失,達到很高的發電效率。同時還有以下一些特點:l不管是滿負荷還是部分負荷均能保持高發電效率;不管裝置規模大小均能保持高發電效率;具有很強的過負載能力;通過與燃料供給裝置組合的可以適用的燃料廣泛;發電出力由電池堆的出力和組數決定,機組的容量的自由度大;電池本體的負荷響應性好,用于電網調峰優于其他發電方式;用天然氣和煤氣等為燃料時,NOX及SOX等排出量少,環境相容性優。如此由燃料電池構成的發電系統對電力工業具有極大的吸引力。燃料電池按其工作溫度是不同,把堿性燃料電池(AFC,工作溫度為100℃)、固體高分子型質子膜燃料電池(PEMFC,也稱為質子膜燃料電池,工作溫度為100℃以內)和磷酸型燃料電池(PAFC,工作溫度為200℃)稱為低溫燃料電池;把熔融碳酸鹽型燃料電池(MCFC,工作溫度為650℃)和固體氧化型燃料電池(SOFC,工作溫度為1000℃)稱為高溫燃料電池,并且高溫燃料電池又被稱為面向高質量排氣而進行聯合開發的燃料電池。另一種分類是按其開發早晚順序進行的,把PAFC稱為第一代燃料電池,把MCFC稱為第二代燃料電池,把SOFC稱為第三代燃料電池。這些電池均需用可燃氣體作為其發電用的燃料。燃料電池其原理是一種電化學裝置,其組成與一般電池相同。其單體電池是由正負兩個電極(負極即燃料電極和正極即氧化劑電極)以及電解質組成。不同的是一般電池的活性物質貯存在電池內部,因此,限制了電池容量。而燃料電池的正、負極本身不包含活性物質,只是個催化轉換元件。因此燃料電池是名符其實的把化學能轉化為電能的能量轉換機器。電池工作時,燃料和氧化劑由外部供給,進行反應。原則上只要反應物不斷輸入,反應產物不斷排除,燃料電池就能連續地發電。這里以氫-氧燃料電池為例來說明燃料電池的基本工作原理。氫-氧燃料電池反應原理這個反映是電觧水的逆過程。電極應為:負極:H2+2OH-→2H2O+2e-正極:1/2O2+H2O+2e-→2OH-電池反應:H2+1/2O2==H2O另外,只有燃料電池本體還不能工作,必須有一套相應的輔助系統,包括反應劑供給系統、排熱系統、排水系統、電性能控制系統及安全裝置等。燃料電池通常由形成離子導電體的電解質板和其兩側配置的燃料極(陽極)和空氣極(陰極)、及兩側氣體流路構成,氣體流路的作用是使燃料氣體和空氣(氧化劑氣體)能在流路中通過。在實用的燃料電池中因工作的電解質不同,經過電解質與反應相關的離子種類也不同。PAFC和PEMFC反應中與氫離子(H+)相關,發生的反應為:燃料極:H2=2H++2e-(1)空氣極:2H++1/2O2+2e-=H2O(2)全體:H2+1/2O2=H2O(3)氫氧燃料電池組成和反應循環圖在燃料極中,供給的燃料氣體中的H2分解成H+和e-,H+移動到電解質中與空氣極側供給的O2發生反應。e-經由外部的負荷回路,再反回到空氣極側,參與空氣極側的反應。一系例的反應促成了e-不間斷地經由外部回路,因而就構成了發電。并且從上式中的反應式(3)可以看出,由H2和O2生成的H2O,除此以外沒有其他的反應,H2所具有的化學能轉變成了電能。但實際上,伴隨著電極的反應存在一定的電阻,會引起了部分熱能產生,由此減少了轉換成電能的比例。引起這些反應的一組電池稱為組件,產生的電壓通常低于一伏。因此,為了獲得大的出力需采用組件多層迭加的辦法獲得高電壓堆。組件間的電氣連接以及燃料氣體和空氣之間的分離,采用了稱之為隔板的、上下兩面中備有氣體流路的部件,PAFC和PEMFC的隔板均由碳材料組成。堆的出力由總的電壓和電流的乘積決定,電流與電池中的反應面積成比。單電極組裝示意圖PAFC的電解質為濃磷酸水溶液,而PEMFC電解質為質子導電性聚合物系的膜。電極均采用碳的多孔體,為了促進反應,以Pt作為觸媒,燃料氣體中的CO將造成中毒,降低電極性能。為此,在PAFC和PEMFC應用中必須限制燃料氣體中含有的CO量,特別是對于低溫工作的PEMFC更應嚴格地加以限制。磷酸型燃料電池基本組成和反應原理磷酸燃料電池的基本組成和反應原理是:燃料氣體或城市煤氣添加水蒸氣后送到改質器,把燃料轉化成H2、CO和水蒸氣的混合物,CO和水進一步在移位反應器中經觸媒劑轉化成H2和CO2。經過如此處理后的燃料氣體進入燃料堆的負極(燃料極),同時將氧輸送到燃料堆的正極(空氣極)進行化學反應,借助觸媒劑的作用迅速產生電能和熱能。相對PAFC和PEMFC,高溫型燃料電池MCFC和SOFC則不要觸媒,以CO為主要成份的煤氣化氣體可以直接作為燃料應用,而且還具有易于利用其高質量排氣構成聯合循環發電等特點。MCFC主構成部件。含有電極反應相關的電解質(通常是為Li與K混合的碳酸鹽)和上下與其相接的2塊電極板(燃料極與空氣極),以及兩電極各自外側流通燃料氣體和氧化劑氣體的氣室、電極夾等,電解質在MCFC約600~700℃的工作溫度下呈現熔融狀態的液體,形成了離子導電體。電極為鎳系的多孔質體,氣室的形成采用抗蝕金屬。MCFC工作原理。空氣極的O2(空氣)和CO2與電相結合,生成CO23-(碳酸離子),電解質將CO23-移到燃料極側,與作為燃料供給的H+相結合,放出e-,同時生成H2O和CO2。化學反應式如下:燃料極:H2+CO23-=H2O+2e-+CO2(4)空氣極:CO2+1/2O2+2e-=CO23-(5)全體:H2+1/2O2=H2O(6)在這一反應中,e-同在PAFC中的情況一樣,它從燃料極被放出,通過外部的回路反回到空氣極,由e-在外部回路中不間斷的流動實現了燃料電池發電。另外,MCFC的最大特點是,必須要有有助于反應的CO23-離子,因此,供給的氧化劑氣體中必須含有碳酸氣體。并且,在電池內部充填觸媒,從而將作為天然氣主成份的CH4在電池內部改質,在電池內部直接生成H2的方法也已開發出來了。而在燃料是煤氣的情況下,其主成份CO和H2O反應生成H2,因此,可以等價地將CO作為燃料來利用。為了獲得更大的出力,隔板通常采用Ni和不銹鋼來制作。SOFC是以陶瓷材料為主構成的,電解質通常采用ZrO2(氧化鋯),它構成了O2-的導電體Y2O3(氧化釔)作為穩定化的YSZ(穩定化氧化鋯)而采用。電極中燃料極采用Ni與YSZ復合多孔體構成金屬陶瓷,空氣極采用LaMnO3(氧化鑭錳)。隔板采用LaCrO3(氧化鑭鉻)。為了避免因電池的形狀不同,電解質之間熱膨脹差造成裂紋產生等,開發了在較低溫度下工作的SOFC。電池形狀除了有同其他燃料電池一樣的平板型外,還有開發出了為避免應力集中的圓筒型。SOFC的反應式如下:燃料極:H2+O2-=H2O+2e-(7)空氣極:1/2O2+2e-=O2-(8)全體:H2+1/2O2=H2O(9)燃料極,H2經電解質而移動,與O2-反應生成H2O和e-。空氣極由O2和e-生成O2-。全體同其他燃料電池一樣由H2和O2生成H2O。在SOFC中,因其屬于高溫工作型,因此,在無其他觸媒作用的情況下即可直接在內部將天然氣主成份CH4改質成H2加以利用,并且煤氣的主要成份CO可以直接作為燃料利用。表1燃料電池的分類類型磷酸型燃料電池(PAFC)熔融碳酸鹽型燃料電池(MCFC)固體氧化物型燃料電池(SOFC)質子交換膜燃料電池(PEMFC)燃料煤氣、天然氣、甲醇等煤氣、天然氣、甲醇等煤氣、天然氣、甲醇等純H2、天然氣電解質磷酸水溶液KliCO3溶鹽ZrO2-Y2O3(YSZ)離子(Na離子)電極陽極多孔質石墨(Pt催化劑)多孔質鎳(不要Pt催化劑)Ni-ZrO2金屬陶瓷(不要Pt催化劑)多孔質石墨或Ni(Pt催化劑)陰極含Pt催化劑+多孔質石墨+Tefion多孔NiO(摻鋰)LaXSr1-XMn(Co)O3多孔質石墨或Ni(Pt催化劑)工作溫度~200℃~650℃800~1000℃~100℃近20多年來,燃料電池經歷了堿性、磷酸、熔融碳酸鹽和固體氧化物等幾種類型的發展階段,燃料電池的研究和應用正以極快的速度在發展。AFC已在宇航領域廣泛應用,PEMFC已廣泛作為交通動力和小型電源裝置來應用,PAFC作為中型電源應用進入了商業化階段,MCFC也已完成工業試驗階段,起步較晚的作為發電最有應用前景的SOFC已有幾十千瓦的裝置完成了數千小時的工作考核,相信隨著研究的深入還會有新的燃料電池出現。美日等國已相繼建立了一些磷酸燃料電池電廠、熔融碳酸鹽燃料電池電廠、質子交換膜燃料電池電廠作為示范。日本已開發了數種燃料電池發電裝置供公共電力部門使用,其中磷酸燃料電池(PAFC)已達到"電站"階段。已建成兆瓦級燃料電池示范電站進行試驗,已就其效率、可運行性和壽命進行了評估,期望應用于城市能源中心或熱電聯供系統。日本同時建造的小型燃料電池發電裝置,已廣泛應用于醫院、飯店、賓館等。3.燃料電池發電系統3.1.利用天然氣的發電系統MCFC需要供給的燃料氣體是H2,它可由天然氣中的CH4改質生成,其反應在改質器中進行。改質器出口的溫度為600℃,符合MCFC的工作溫度,可以原樣直接輸送到燃料極側。另一方面,空氣極側需要的O2通過空氣壓縮機供給。另一個反應因素CO2,空氣極側反應等量地再利用發電時燃料極產生的CO2。除了有CO2外,燃料極排出氣體還含有未反應的可燃成份,一起輸送到改質器的燃燒器側,天然氣改質所必需的熱量就由該燃燒熱供給。這種情況下,排出的燃料氣體會含有過多的H2O,將影響發熱量,為此通常是先將排出燃料氣體冷卻,將水份濾去后再輸送到改質器的燃燒側。從改質器燃燒側出來的氣體與來自壓縮機的空氣相混合后供給空氣極側。實際的電池因內部存在電阻會發熱,故通過在空氣極側中流過的大量氧化氣體(陰極氣體,即含有O2、CO2的氣體)來除去其發生的熱。通常是按600℃供給的氣體在700℃下排出,這一指標可通過在空氣極側進行流量調整來控制,為此采用陰極氣體的再循環,即,空氣極側供給的氣體為以改質器燃燒排氣與部分空氣極側排出氣體的混合體,為了保持電池入口和出口的溫度為最佳溫度,可將再循環流量與外部供給的空氣流量一起調整。來自空氣極側的排氣為高溫,送入最終的膨脹式透平,進行動力回收,作為空氣壓縮動力而應用。剩余的動力,由發電機發電回收,從而可以提高整套系統的效率。另外,天然氣改質所必需的H2O(水蒸汽)可從排出的燃料氣體中回收的H2O來供給。這種系統的效率可達55~60%。在整套出力中MCFC發電量份額占90%。絕大部分的發電量是由MCFC生產的。如果考慮到排氣形成的動力回收和若干的附加發電,廣義上也可以稱為聯合發電。在使用PAFC的情況下,若以煤炭為燃料發電時就不容易了,采用天然氣時,其構成類似于MCFC機組,基本上是由電池本體發電。原因是PAFC排出氣體溫度較低,與其進行附加發電不如作為熱電聯產電源。SOFC能和較高溫度的排氣體構成附加發電系統,由于SOFC不需要CO2的再循環等,結構簡單,其發電效率可以達到50~60%。3.2利用煤炭的發電系統以MCFC為例進行介紹。煤炭需經煤氣化裝置生成作為MCFC可用燃料的CO及H2,并在進入MCFC前除去其中含有的雜質(微量的雜質就會構成對MCFC的惡劣影響),這種供給MCFC精制煤氣,其壓力通常高于MCFC的工作壓力,在進入MCFC供氣前先經膨脹式渦輪機回收其動力。渦輪機出口氣體,經與部分來自燃料極(陽極)排出的高溫氣體(約700℃)相混合,調整為對電池的適宜溫度(約600℃)。該陽極氣體的再循環是,將排出的燃料氣體中所含的未反應的燃料成分返回入口加以再利用,借以達到提高燃料的利用率。向空氣極側供給O2和CO2是通過空氣壓縮機輸出的空氣和排出燃料氣體相混合來完成的。但是,碳酸氣是采用觸媒燃燒器將未燃的H2及CO變換成H2O和CO2后供給的。實際的燃料電池,內部電阻會發熱,將通過在空氣極側流過的大量的氧化劑氣體(陰極氣體,即含有O2和CO2的氣體)而除去。通常通過調整空氣極側的流量,把以600℃供給的氣體在700℃排出。為此采用了陰極氣體再循環,使空氣極側的排氣形成約700℃的高溫。因此,在這個循環回路中設置了熱交換器,將氣體溫度冷卻到600℃,形成電池入口適宜的溫度,與來自觸媒燃燒器的供給氣體相混合。空氣極側的出入口溫度,取決于再循環和來自壓縮機的供給空氣流量和再循環回路中的熱交換量。排熱回收系統(末級循環),是由利用空氣極側排氣的膨脹式渦輪機和利用蒸汽的汽輪機發電來構成。膨脹式渦輪機與壓縮機的相組合,其剩余動力用于發電。蒸汽是由來自其下流的熱回收和煤氣化裝置以及陰極氣體再循環回路中的蒸汽發生器之間的組合產生,形成汽水循環。這種機組的發電效率,因煤氣化方式和煤氣精制方式等的不同而有若干差異。利用煤系統SOFC其構成是復雜的。但若用管道氣就簡單多了,主要的是采用煤炭氣化系統造成的,其效率為45~55%。4.我國燃料電池的發展狀況我國的燃料電池研究始于1958年,原電子工業部天津電源研究所最早開展了MCFC的研究。70年代在航天事業的推動下,中國燃料電池的研究曾呈現出第一次高潮。其間中國科學院大連化學物理研究所研制成功的兩種類型的堿性石棉膜型氫氧燃料電池系統(千瓦級AFC)均通過了例行的航天環境模擬試驗。1990年中國科學院長春應用化學研究所承擔了中科院PEMFC的研究任務,1993年開始進行直接甲醇質子交換膜燃料電池(DMFC)的研究。電力工業部哈爾濱電站成套設備研究所于1991年研制出由7個單電池組成的MCFC原理性電池。"八五"期間,中科院大連化學物理研究所、上海硅酸鹽研究所、化工冶金研究所、清華大學等國內十幾個單位進行了與SOFC的有關研究。到90年代中期,由于國家科技部與中科院將燃料電池技術列入"九五"科技攻關計劃的推動,中國進入了燃料電池研究的第二個高潮。質子交換膜燃料電池被列為重點,以大連化學物理研究所為牽頭單位,在中國全面開展了質子交換膜燃料電池的電池材料與電池系統的研究,并組裝了多臺百瓦、1kW-2kW、5kW和25kW電池組與電池系統。5kW電池組包括內增濕部分其重量比功率為100W/kg,體積比功率為300W/L。我國科學工作者在燃料電池基礎研究和單項技術方面取得了不少進展,積累了一定經驗。但是,由于多年來在燃料電池研究方面投入資金數量很少,就燃料電池技術的總體水平來看,與發達國家尚有較大差距。我國有關部門和專家對燃料電池十分重視,1996年和1998年兩次在香山科學會議上對我國燃料電池技術的發展進行了專題討論,強調了自主研究與開發燃料電池系統的重要性和必要性。近幾年我國加強了在PEMFC方面的研究力度。2000年大連化學物理研究所與中科院電工研究所已完成30kW車用用燃料電池的全部試驗工作。北京富原公司也宣布,2001年將提供40kW的中巴燃料電池,并接受訂貨。科技部副部長徐冠華一年前在EVS16屆大會上宣布,中國將在2000年裝出首臺燃料電池電動車。我國燃料電池的研究工作已表明:1.中國的質子交換膜燃料電池已經達到可以裝車的技術水平;2.大連化學物理研究所的質子交換膜燃料電池是具有我國自主知識產權的高技術成果;3.在燃料電池研究方面我國可以與世界發達國家進行競爭,而且在市場份額方面,我國可以并且有能力占有一定比例。但是我國在PAFC、MCFC、SOFC的研究方面還有較大的差距,目前仍處于研制階段。此前參與燃料電池研究的有關概況如下:4.1.PEMFC的研究狀況我國最早開展PEMFC研制工作的是長春應用化學研究所,該所于1990年在中科院扶持下開始研究PEMFC,工作主要集中在催化劑、電極的制備工藝和甲醇外重整器的研制,已制造出100WPEMFC樣機。1994年又率先開展直接甲醇質子交換膜燃料電池的研究工作。該所與美國CaseWesternReserve大學和俄羅斯氫能與等離子體研究所等建立了長期協作關系。中國科學院大連化學物理所于1993年開展了PEMFC的研究,在電極工藝和電池結構方面做了許多工作,現已研制成工作面積為140cm2的單體電池,其輸出功率達0.35W/cm2。清華大學核能技術設計院1993年開展了PEMFC的研究,研制的單體電池在0.7V時輸出電流密度為100mA/cm2,改進石棉集流板的加工工藝,并提出列管式PEMFC的設計,該單位已與德國Karlsrube研究中心建立了一定的協作關系。天津大學于1994年在國家自然科學基金會資助下開展了PEMFC的研究,主要研究催化劑和電極的制備工藝。復旦大學在90年代初開始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制備和電極制備工藝。廈門大學近年來與香港大學和美國的CaseWesternReserve大學合作開展了直接甲醇PEMFC的研究。1994年,上海大學與北京石油大學合作研究PEMFC("八五"攻關項目),主要研究催化劑、電極、電極膜集合體的制備工藝。北京理工大學于1995年在兵器工業部資助下開始了PEMFC的研究,目前單體電池的電流密度為150mA/cm2。中國科學院工程熱物理研究所于1994年開始研究PEMFC,主營使用計算傳熱和計算流體力學方法對各種供氣、增濕、排熱和排水方案進行比較,提出改進的傳熱和傳質方案。天津電源研究所1997年開始PEMFC的研究,擬從國外引進1.5kW的電池,在解析吸收國外先進技術的基礎上開展研究。華南理工大學于1997年初在廣東省佛山基金資助下開展了PEMFC的研究,與國家科委電動車示范區建設相配合作了一定的研究工作。其天然氣催化轉化制一氧化碳和氫氣的技術現已申請國家發明專利。中科院電工研究所最近開展了電動車用PEMFC系統工程和運行模式研究,擬與有色金屬研究院合作研究PEMFC/光伏電池(制氫)互補發電系統和從國外引進PEMFC裝置。1995年北京富原公司與加拿大新能源公司合作進行PEMFC的研制與開發,5kW的PEMFC樣機現已研制成功并開始接受訂貨。4.2.MCFC的研究簡況國內開展MCFC研究的單位不太多。哈爾濱電源成套設備研究所在80年代后期曾研究過MCFC,90年代初停止了這方面的研究工作。1993年中國科學院大連化學物理研究所在中國科學院的資助下開始了MCFC的研究,自制LiAlO2微粉,用冷滾壓法和帶鑄法制備出MCFC用的隔膜,組裝了單體電池,其性能已達到國際80年代初的水平。90年代初,中國科學院長春應用化學研究所也開始了MCFC的研究,在LiAlO2微粉的制備方法研究和利用金屬間化合物作MCFC的陽極材料等方面取得了很大進展。北京科技大學于90年代初在國家自然科學基金會的資助下開展了MCFC的研究,主要研究電極材料與電解質的相互作用,提出了用金屬間化合物作電極材料以降低它的溶解。中國科學院上海冶金研究所近年來也開始了MCFC的研究,主要著重于研究氧化鎳陰極與熔融鹽的相互作用。1995年上海交通大學與長慶油田合作開始了MCFC的研究,目標是共同開發5kW~10kW的MCFC。中國科學院電工研究所在"八五"期間,考察了國外MCFC示范電站的系統工程,調查了電站的運行情況,現已開展了MCFC電站系統工程關鍵技術的研究與開發。4.3.SOFC的研究簡況最早開展SOFC研究的是中國科學院上海硅酸鹽研究所他們在1971年就開展了SOFC的研究,主要側重于SOFC電極材料和電解質材料的研究。80年代在國家自然科學基金會的資助下又開始了SOFC的研究,系統研究了流延法制備氧化鋯膜材料、陰極和陽極材料、單體SOFC結構等,已初步掌握了濕化學法制備穩定的氧化鋯納米粉和致密陶瓷的技術。吉林大學于1989年在吉林省青年科學基金資助下開始對SOFC的電解質、陽極和陰極材料等進行研究,組裝成單體電池,通過了吉林省科委的鑒定。1995年獲吉林省計委和國家計委450萬元人民幣的資助,先后研究了電極、電解質、密封和聯結材料等,單體電池開路電壓達1.18V,電流密度400mA/cm2,4個單體電池串聯的電池組能使收音機和錄音機正常工作。1991年中國科學院化工冶金研究所在中國科學院資助下開展了SOFC的研究,從研制材料著手,制成了管式和平板式的單體電池,功率密度達0.09W/cm2~0.12W/cm2,電流密度為150mA/cm2~180mA/cm2,工作電壓為0.60V~0.65V。1994年該所從俄羅斯科學院烏拉爾分院電化學研究所引進了20W~30W塊狀疊層式SOFC電池組,電池壽命達1200h。他們在分析俄羅斯疊層式結構、美國Westinghouse的管式結構和德國Siemens板式結構的基礎上,設計了六面體式新型結構,該結構吸收了管式不密封的優點,電池間組合采用金屬氈柔性聯結,并可用常規陶瓷制備工藝制作。中國科學技術大學于1982年開始從事固體電解質和混合導體的研究,于1992年在國家自然科學基金會和"863"計劃的資助下開始了中溫SOFC的研究。一種是用納米氧化鋯作電解質的SOFC,工作溫度約為450℃。另一種是用新型的質子導體作電解質的SOFC,已獲得接近理論電動勢的開路電壓和200mA/cm2的電流密度。此外,他們正在研究基于多孔陶瓷支撐體的新一代SOFC。清華大學在90年代初開展了SOFC的研究,他們利用緩沖溶液法及低溫合成環境調和性新工藝成功地合成了固體電解質、空氣電極、燃料電極和中間聯結電極材料的超細粉,并開展了平板型SOFC成型和燒結技術的研究,取得了良好效果。華南理工大學于1992年在國家自然科學基金會、廣東省自然科學基金、汕頭大學李嘉誠科研基金、廣東佛山基金共一百多萬元的資助下開始了SOFC的研究,組裝的管狀單體電池,用甲烷直接作燃料,最大輸出功率為4mW/cm2,電流密度為17mA/cm2,連續運轉140h,電池性能無明顯衰減。中國科學院山西煤炭化學研究所在1994年開始SOFC研究,用超細氧化鋯粉在1100℃下燒結制成穩定和致密的氧化鋯電解質。該所從80年代初開始煤氣化熱解的研究,以提供燃料電池的氣源。煤的灰熔聚氣化過程已進入工業性試驗階段,正在鎮江市建立工業示范裝置。該所還開展了使煤氣化熱解的煤氣在高溫下脫硫除塵和甲醇脫氫生產合成氣的研究,合成氣中CO和H2的比例為1∶2,已有成套裝置出售。中國科學院大連化學物理所于1994年開展了SOFC的研究工作,在電極和電解質材料的研究上取得了可喜的進展。中國科學院北京物理所于1995年在國家自然科學基金會的資助下,開展了用于SOFC的新型電解質和電極材料的基礎性研究。(
燃料電池發電技術分析論文
1.磷酸型燃料電池(PAFC)
PAFC技術開發的現狀與動向:
日本自實施月光計劃以來,作為國家級項目,正在實施5000千瓦級加壓型和1000千瓦級常壓型電廠實證運行。目前,磷酸型燃料電池的發電效率為30%~40%,如果將熱利用考慮進去,綜合效率可高達60%~80%。
除日本外,目前世界約有60臺PAFC發電設備在運轉,總輸出功率約為4.1萬千瓦。按國別和地區劃分日本為2.9萬千瓦,美國8000千瓦,歐洲3000千瓦,亞洲900千瓦。運轉中的發電設備除3臺(日本2臺,意大利1臺)為加壓型外,其他均為常壓型。磷酸型燃料電池的制造廠家目前主要為日本和美國,設備主要銷往歐、亞。
美國已完成基礎研究,200千瓦級電廠用電池近期有望商品化,但大容量電廠用電池處于停滯狀態。德國已引進美國200千瓦級電廠用電池進行試驗運行。另外,瑞典、意大利、瑞士等國也引進日、美的電池進行試運行。
2.熔融碳酸鹽型燃料電池(MCFC)
垃圾發電技術開發論文
1前言
當今世界,環境污染日益加劇,環境保護已成為國民經濟可持續發展的重要組成部分。臨沂市是魯西南重要的商貿樞紐,近幾年來,隨著商貿批發市場規模的發展,城市人口迅速增加。相應的城市生活垃圾的數量也在急劇增加,據統計,現在天天產生城市生活垃圾約600噸左右,并以每年平均10%增長率遞增。臨沂市政府把垃圾處理列為99年度市政府“為民十大工程”之一,決定投資5000萬元,在臨沂市城西北36公里處征地1500畝,用于城市生活垃圾的填埋。一期工程先征地500畝,現在正在進行勘探、水文調查、基礎處理等前期工作。
城市生活垃圾的處理方法主要有填埋、堆肥、焚燒等。填埋法方便易行,處理量大,是現在城市垃圾處理的一種主要方法,但是易造成二次污染,非凡是垃圾中的一些有毒有害物質填埋腐爛后,滲透到地下,引起地下水的污染;同時產生的一些有害氣體
造成環境的二次污染,并且需占用大量的土地。焚燒法是最有效的方法,使城市垃圾處理基本上達到了減容化、無害化和能源化的目的。垃圾焚燒后,一般體積可減少90%以上,重量減輕80%以上;高溫焚燒后還能消除垃圾中大量有害病菌和有毒物質,可有效地控制二次污染。垃圾焚燒后產生的熱能可用于發電供熱,實現了能源的綜合利用。
2垃圾發電供熱技術的可行性分析
城市生活垃圾焚燒發電技術在國外已有四十多年的歷史,最先利用垃圾發電的是德國和法國,近幾十年來,美國和日本在垃圾發電方面的發展也相當迅速。目前,日本擁有垃圾發電廠一百多座,發電總容量在320MW以上,單臺設備最大處理垃圾能力為552噸/日。
垃圾發電技術研究論文
1前言
當今世界,環境污染日益加劇,環境保護已成為國民經濟可持續發展的重要組成部分。臨沂市是魯西南重要的商貿樞紐,近幾年來,隨著商貿批發市場規模的發展,城市人口迅速增加。相應的城市生活垃圾的數量也在急劇增加,據統計,現在每天產生城市生活垃圾約600噸左右,并以每年平均10%增長率遞增。臨沂市政府把垃圾處理列為99年度市政府“為民十大工程”之一,決定投資5000萬元,在臨沂市城西北36公里處征地1500畝,用于城市生活垃圾的填埋。一期工程先征地500畝,現在正在進行勘探、水文調查、基礎處理等前期工作。
城市生活垃圾的處理方法主要有填埋、堆肥、焚燒等。填埋法方便易行,處理量大,是現在城市垃圾處理的一種主要方法,但是易造成二次污染,特別是垃圾中的一些有毒有害物質填埋腐爛后,滲透到地下,引起地下水的污染;同時產生的一些有害氣體
造成環境的二次污染,并且需占用大量的土地。焚燒法是最有效的方法,使城市垃圾處理基本上達到了減容化、無害化和能源化的目的。垃圾焚燒后,一般體積可減少90%以上,重量減輕80%以上;高溫焚燒后還能消除垃圾中大量有害病菌和有毒物質,可有效地控制二次污染。垃圾焚燒后產生的熱能可用于發電供熱,實現了能源的綜合利用。
2垃圾發電供熱技術的可行性分析
城市生活垃圾焚燒發電技術在國外已有四十多年的歷史,最先利用垃圾發電的是德國和法國,近幾十年來,美國和日本在垃圾發電方面的發展也相當迅速。目前,日本擁有垃圾發電廠一百多座,發電總容量在320MW以上,單臺設備最大處理垃圾能力為552噸/日。
新型發電技術研究論文
【摘要】在發電領域減少二氧化碳產生的途徑包括:提高發電效率減少燃耗;采用原子能發電;使用再生(天然)能源。每單位發電量二氧化碳的產生,以礦物燃料發電最高,特別是燒煤電廠。再生能源發電雖然設施的建造會產生二氧化碳,但發電本身不會產生二氧化碳。因此,增加使用再生能源發電和有效使用礦物燃料,是抑制產生二氧化碳的有效方法
人口是影響能耗的重要因素,全球人口的增加將造成能耗增加,導致大氣層中二氧化碳濃度上升,使氣溫上升,全球變暖。
在發電領域減少二氧化碳產生的途徑包括:提高發電效率減少燃耗;采用原子能發電;使用再生(天然)能源。每單位發電量二氧化碳的產生,以礦物燃料發電最高,特別是燒煤電廠。再生能源發電雖然設施的建造會產生二氧化碳,但發電本身不會產生二氧化碳。因此,增加使用再生能源發電和有效使用礦物燃料,是抑制產生二氧化碳的有效方法。
再生能源發電技術可分為水力發電;風力發電;太陽能發電(太陽─熱發電和光伏發電);海洋發電(海洋-熱能轉換、潮汐、洋流、海波);地熱發電。
水力發電
水力發電是目前發電技術中每單位發電量產生二氧化碳最低的。它不會產生破壞環境的物質;在徑流式水電站的情況下,也不需要水庫,對保護環境最為有利。在水庫型和抽水儲能型電站情況下,必須考慮水庫建造對環境的影響。
全球變暖發電技術分析論文
【摘要】在發電領域減少二氧化碳產生的途徑包括:提高發電效率減少燃耗;采用原子能發電;使用再生(天然)能源。每單位發電量二氧化碳的產生,以礦物燃料發電最高,特別是燒煤電廠。再生能源發電雖然設施的建造會產生二氧化碳,但發電本身不會產生二氧化碳。因此,增加使用再生能源發電和有效使用礦物燃料,是抑制產生二氧化碳的有效方法
人口是影響能耗的重要因素,全球人口的增加將造成能耗增加,導致大氣層中二氧化碳濃度上升,使氣溫上升,全球變暖。
在發電領域減少二氧化碳產生的途徑包括:提高發電效率減少燃耗;采用原子能發電;使用再生(天然)能源。每單位發電量二氧化碳的產生,以礦物燃料發電最高,特別是燒煤電廠。再生能源發電雖然設施的建造會產生二氧化碳,但發電本身不會產生二氧化碳。因此,增加使用再生能源發電和有效使用礦物燃料,是抑制產生二氧化碳的有效方法。
再生能源發電技術可分為水力發電;風力發電;太陽能發電(太陽─熱發電和光伏發電);海洋發電(海洋-熱能轉換、潮汐、洋流、海波);地熱發電。
水力發電
水力發電是目前發電技術中每單位發電量產生二氧化碳最低的。它不會產生破壞環境的物質;在徑流式水電站的情況下,也不需要水庫,對保護環境最為有利。在水庫型和抽水儲能型電站情況下,必須考慮水庫建造對環境的影響。
太陽能發電技術分析論文
摘要:本文講述了太陽能發電系統的結構和工作原理。太陽能發電系統在廣大無電地區或供電嚴重不足地區應用,可有效地解決居民照明及生活用電的困難。文中提出充分利用太陽能,研究開發推廣節能型的綠色光源,是實現建筑綠色照明,實施國家"綠色照明工程"的重要措施。
關鍵詞:太陽能發電綠色照明一體化
太陽能發電是利用電池組件將太陽能直接轉變為電能的裝置。太陽能電池組件(Solarcells)是利用半導體材料的電子學特性實現P-V轉換的固體裝置,在廣大的無電力網地區,該裝置可以方便地實現為用戶照明及生活供電,一些發達國家還可與區域電網并網實現互補。目前從民用的角度,在國外技術研究趨于成熟且初具產業化的是"光伏--建筑(照明)一體化"技術,而國內主要研究生產適用于無電地區家庭照明用的小型太陽能發電系統。
1太陽能發電原理
太陽能發電系統主要包括:太陽能電池組件(陣列)、控制器、蓄電池、逆變器、用戶即照明負載等組成。其中,太陽能電池組件和蓄電池為電源系統,控制器和逆變器為控制保護系統,負載為系統終端。
1.1太陽能電源系統
天然氣發電技術特點分析論文
關鍵詞:天然氣燃氣-蒸汽聯合循環發電價格政策
在“西部大開發”戰略的指引下,史無前例的“西氣東輸”工程全面施工,引進液化天然氣和管道氣項目也全面開展。國家重點支持發展的天然氣燃氣—蒸汽輪機聯合循環發電工程首批聯合招標項目裝機總容量8000MW,計劃于2005~2006年建成發電。以引進技術形成自主開發能力為目標的燃氣輪機制造產業也在分階段實現。我國天然氣燃氣輪機和聯合循環發電進入一個新的發展時期。
據統計,2001年世界天然氣消費量達24049億立方米,天然氣在世界能源消費結構中的比例達24.7%。第16世界石油大會報告認為2010年全球天然氣消費量將增加到49000億立方米,且預計到2040年天然氣在世界能源消費結構中的比例將上升到51%。
當今世界主要工業發達國家能源結構中天然氣所占比例為:美國25.8%,英國38.1%,俄羅斯54.6%。而我國僅為2.5%。
此外在1995年世界電力結構中天然氣發電占18.54%,當時我國是1.4%。近期我國天然氣燃氣輪機發電裝機容量將有增加,但預計到2006年天然氣發電在電力結構中的比重僅達2.7%。
以上統計說明,我國在天然氣應用和天然氣發電上與世界工業發達國家相比有巨大差距,努力推動我國天然氣發電的任務是緊迫的,也是有很大發展空間的。
發達國家燃料電池發電技術研究論文
1.磷酸型燃料電池(PAFC)
PAFC技術開發的現狀與動向:
日本自實施月光計劃以來,作為國家級項目,正在實施5000千瓦級加壓型和1000千瓦級常壓型電廠實證運行。目前,磷酸型燃料電池的發電效率為30%~40%,如果將熱利用考慮進去,綜合效率可高達60%~80%。
除日本外,目前世界約有60臺PAFC發電設備在運轉,總輸出功率約為4.1萬千瓦。按國別和地區劃分日本為2.9萬千瓦,美國8000千瓦,歐洲3000千瓦,亞洲900千瓦。運轉中的發電設備除3臺(日本2臺,意大利1臺)為加壓型外,其他均為常壓型。磷酸型燃料電池的制造廠家目前主要為日本和美國,設備主要銷往歐、亞。
美國已完成基礎研究,200千瓦級電廠用電池近期有望商品化,但大容量電廠用電池處于停滯狀態。德國已引進美國200千瓦級電廠用電池進行試驗運行。另外,瑞典、意大利、瑞士等國也引進日、美的電池進行試運行。
2.熔融碳酸鹽型燃料電池(MCFC)
發電技術與熱電持續發展論文
1前言
當今世界,環境污染日益加劇,環境保護已成為國民經濟可持續發展的重要組成部分。臨沂市是魯西南重要的商貿樞紐,近幾年來,隨著商貿批發市場規模的發展,城市人口迅速增加。相應的城市生活垃圾的數量也在急劇增加,據統計,現在每天產生城市生活垃圾約600噸左右,并以每年平均10%增長率遞增。臨沂市政府把垃圾處理列為99年度市政府“為民十大工程”之一,決定投資5000萬元,在臨沂市城西北36公里處征地1500畝,用于城市生活垃圾的填埋。一期工程先征地500畝,現在正在進行勘探、水文調查、基礎處理等前期工作。
城市生活垃圾的處理方法主要有填埋、堆肥、焚燒等。填埋法方便易行,處理量大,是現在城市垃圾處理的一種主要方法,但是易造成二次污染,特別是垃圾中的一些有毒有害物質填埋腐爛后,滲透到地下,引起地下水的污染;同時產生的一些有害氣體
造成環境的二次污染,并且需占用大量的土地。焚燒法是最有效的方法,使城市垃圾處理基本上達到了減容化、無害化和能源化的目的。垃圾焚燒后,一般體積可減少90%以上,重量減輕80%以上;高溫焚燒后還能消除垃圾中大量有害病菌和有毒物質,可有效地控制二次污染。垃圾焚燒后產生的熱能可用于發電供熱,實現了能源的綜合利用。
2垃圾發電供熱技術的可行性分析
城市生活垃圾焚燒發電技術在國外已有四十多年的歷史,最先利用垃圾發電的是德國和法國,近幾十年來,美國和***在垃圾發電方面的發展也相當迅速。目前,***擁有垃圾發電廠一百多座,發電總容量在320MW以上,單臺設備最大處理垃圾能力為552噸/日。