網上交易者和管理者模型探索
時間:2022-04-17 03:34:00
導語:網上交易者和管理者模型探索一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
論文內容摘要:管理者的信用監管目標不是要杜絕網上交易者的欺詐行為,而是要對網上交易者的欺詐行為控制在一定范圍之內和提高信用監管的時效性。電子商務信用風險的形成不僅是買賣雙方之間和賣方之間博弈的結果,也是網上交易者和管理者相互博弈的結果。網上交易者是否守信,取決于對違約成本和由此而帶來的可能收益的權衡;管理者是否對網上交易者監管或者決定監管力度的大小時,也會對監管的成本與收益進行權衡。根據動態博弈模型可以得到:網上交易者的違規程度與懲罰力度、網上交易者的折現因子與管理者的信用監管概率成反比;而管理者的信用監管力度與懲罰力度、網上交易者的折現因子的平方與管理者的信用監管成反比。
從虛擬市場中管理者和網上交易者的關系看,電子商務信用風險問題實質上是管理者對網上交易者信用監管的有效性問題。有關學者的研究報告指出(Selis,RamasastryandWright,2001):有40%的在線買家參與在線拍賣時遇到了網上欺詐和信用缺失問題,主要是因為欺詐能帶來巨額收益;也有學者認為(BrynjolfssonandSmith,2000):因媒介(互聯網)所造成的時空分離將提高網上交易者的行騙和受騙機率。虛擬市場欺詐行為盛行,使電子商務信用風險居高不下,除如前述學者分析的原因外,還在于管理者對網上交易者缺乏有效的信用監管。所以可以認為,電子商務信用風險的形成不僅是買賣雙方之間和賣方之間博弈的結果,也是網上交易者和管理者相互博弈的結果。
根據預期效用理論和理性經濟人假設,理性的經濟人主動守信的條件是失信時的預期效用小于守信時的期望效用。電子商務活動中網上交易者是否守信并據此決定自己的行為,會對違約成本和由此而帶來的可能收益進行權衡;管理者全權代表政府管理虛擬市場,是否對網上交易者監管或者決定監管力度大小時,也會對監管的成本與收益進行權衡。網上交易者違約成本不僅與違約所受處罰力度相關,而且與政府的監管力度相關,而政府的監管力度又與違約程度以及由此帶來的損失相關。這兩種主體的行為結果便形成了不同的電子商務信用風險。
有關博弈情境的假設
博弈情境是指參與人在進行博弈時所面臨的對手、信息和市場等有可能影響博弈結果的參數集合?,F實的經濟環境是復雜的,為了便于分析,對電子商務中管理者和網上交易者之間的博弈情境作如下假設:
假設一:管理者和網上交易者的博弈是一個兩階段的動態博弈。二者行動的時間順序如下:首先,政府決定監管力度;然后,網上交易者決定違規程度。
假設二:政府的監管概率(即監管力度,也稱捕獲概率)為P(0≤p≤1);網上交易者違約或失信而取得的違約收入為Q(Q≥0),同時給社會帶來的損失為αQ(α≥1)。
假設三:如果網上交易者的違約行為被發現,政府對他的懲罰與他違約程度的平方成正比,即βQ2(β>0),β為懲罰因子,表示對網上交易者違約程度的懲罰度;而其中的μβQ2(0<μ≤1)成為管理者的凈收入,μ為轉移因子,表示懲罰中轉移為政府凈收入的比例;政府的監管成本為C(C>0)。
假設四:設網上交易者的折現因子為δ(0≤δ≤1),折現因子是交易的時間偏好和時間長度的函數,網上交易者越看中當前的利益,δ就越??;時間越長,δ也就越?。徽恼郜F因子為1。
假設五:假設上述信息除網上交易者違約程度和政府的監管力度以外,其余的均為共同知識。
假設六:網上交易者所有違約行為,只要政府進行監管就能查得出來。由于受到監管成本和其他不確定因素的制約,現實中無法做到這一點但可以通過無限加大監管成本C而等效地實現。
網上交易者和管理博弈的基本模型
當網上交易者違約時,設網上交易者和政府的期望收益分別為E(It)和E(Ia),根據前述分析和上述假設2、3和4,則有:
(1)
(2)
易得網上交易者最優違約值為
(3)
(3)式表明,最優的違約程度與懲罰力度、網上交易者的貼現因子以及管理者的監管概率成反比,即管理者監管的力度越大,網上交易者的違約程度越低;管理者對違約網上交易者的懲罰越大,網上交易者的違約程度也越低;而更看中當前利益的網上交易者,其違約程度則越高。
將(3)式代入(2)式可以得到
(4)
(4)式表明,在給定對網上交易者違約程度的理性預期情況下,所需要的監管力度與懲罰力度、網上交易者貼現因子的平方以及管理者的監管成本成反比。即懲罰力度和政府的監管成本越大,所需要的監管力度就越小,而對于更看中當前利益的網上交易者,政府對他們所進行的監管也應該越大。
網上交易者和管理者博弈模型分析
在網上交易者和管理者博弈的基本模型中,網上交易者的折現因子是一個不確定性變量,因此,下面對模型在不同折現因子的條件下進行求解。
(一)2αδ-μ<0時的模型解
如果2αδ-μ<0(即),根據模型中的(7)式,則P*2<0,但事實中無法取得滿足條件的P值。由于在2αδ-μ<0的條件下,E(Ia)是關于P的減函數。由于0≤p≤1,故最優的管理者監管力度P*=0,此時,最優的網上交易者違約程度Q*→∞。據此,以得到模型的最優解:當時,(5)
(5)式也是2αδ-μ<0時模型納什均衡解。根據(5)式,在的情況下,即使懲罰因子β→∞,管理者最優的監管概率仍然為0,而此時這些網上交易者就會肆意違約,大肆行騙,從而使違約程度Q→∞。也就是說,對于更看中當前利益至程度的網上交易者,最優的事后信用監管無法在控制他們的欺詐行為。而要控制他們的欺詐行為,唯一的對策就是改變δ值,使他們的,從而使的網上交易者不再存在。而δ值取決于網上交易者的時間偏好和時間長度。一般而言,網上交易者的時間偏好是一種個人特質,而個人特質是一個慢變量,管理者無法改變網上交易者的類型。因此,改變δ值的唯一途徑在于改變時間長度,即網上交易者獲得違約收入與接受懲罰的時間間隔。由于時間間隔越長,δ值越小,相反則越大。因此,對網上交易者進行更加及時的事后信用監督,甚至變事后信用監管為事前信用監管,是降低這類更看中當前利益至程度的網上交易者違約行為的有效途徑。當然,事前信用監管的實行相當困難,因為網上交易者的欺詐行為還沒有發生,即使進行了監管,也無法對他的收益產生影響。因此,提高信用監管的時效性,實行實時信用監管,是控制的網上交易者欺詐行為的唯一措施。
(二)2αδ-μ≥0時的模型解
如果2αδ-μ≥0(即),根據模型中的(4)式,可以分兩種情況來討論:
1.>1時。如果>1(即β<),則P*2=>1,而現實中無法取到滿足條件的P值。在此條件下,E(Ia)是關于P的增函數。由于0≤p≤1,故最優的信用監管力度P*=1,此時,最優的網上交易者違約程度。據此可以得到模型的納什均衡和最優解:
(6)
2.≤1時。如果≤1(即β≥),故最優的信用監管力度,此時,最優的網上交易者違約程度。據此,可以得到模型的納什均衡和最優解:
(7)
根據(6)和(7)式,顯然,這種情況下,即使管理者實行了最優的事后信用監管,網上交易者的最優違約程度總是大于零??梢?,這種情況下,也不存在杜絕網上交易者違約行為的信用監管;管理者的最優事后監管并不是杜絕網上交易者的信用欺詐行為,而是將其控制在一定的范圍內,在β<和β≥的兩種情況下,可以分別對的網上交易者的欺詐行為控制在不超過和的范圍之內。
根據(5)、(6)和(7)式,最優信用監管P*的選擇有賴于管理者對違約網上交易者的懲罰系數β、網β上交易者的折現因子為δ,而能夠影響最優信用監管P*的選擇,也僅僅是在的條件下;在的情況下,無論β如何變化,它都不會影響最優信用監管P的選擇。
博弈模型及其實際管理意義
根據兩階段動態博弈模型,可以得到:網上交易者的違規程度與懲罰力度、網上交易者的折現因子以及管理者的信用監管概率成反比;而管理者的信用監管力度與懲罰力度、網上交易者的折現因子的平方以及管理者的信用監管成反比。管理者的最優事后信用監管的合適目標并不是要杜絕網上交易者的欺詐行為,而是將的網上交易者的欺詐行為控制在一定范圍之內;最優的信用監管對于控制的網上交易者的欺詐行為來說無能為力,控制這類欺詐行為的唯一措施在于提高信用監管的時效性。這對實際中虛擬市場信用管理具有重要的啟示意義。
首先,折現因子δ是一個具有強烈個人色彩的變量,管理者信用監管或網上交易者行為的管理,必須明確網上交易者的個體類型,并據此確定相應的信用監管類型。同時,這也要求對網上交易者進行有關個人情況評估時,也要評估其折現因子的大小,以利于網上信用管理。
其次,對的網上交易者,由于虛擬市場的虛擬性和信息的不對稱性,使得對網上交易者違約行為程度的發現、調查、定性、處理等過程需要更長的時間。因此,管理需要在管理技術、管理手段、管理模式和管理方法上進行創新,提高網上管理效率,縮短管理者實施懲罰的時間間隔。
參考文獻:
1.范如國,韓民春.博弈論[M].武漢大學出版社,2006
2.張照貴.經濟博弈與應用[M].西南財經大學出版社,2006
3.蔣國慶,蔣芳.成長中的電子商務及其應用[M].中國經濟出版社,2001
- 上一篇:小議地鐵地基液化變形的影響因素
- 下一篇:小議會計代記賬行業發展的狀況和策略