智能控制在機電一體化系統中的運用
時間:2022-03-28 10:27:07
導語:智能控制在機電一體化系統中的運用一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
摘要:敘述了機電一體化系統、智能控制的概述及定義,探討了機電一體化在煤礦機械上的應用和前景及智能控制在機電一體化系統中的應用。
關鍵詞:智能控制;機電一體化系統;應用
伴隨著中國社會主義科學技術及市場經濟快速發展,有關機電一體化系統的建造也進入了一個快速成長的黃金階段,機電一體化的技能也逐步老練成熟。由于相關系統所處外部環境在不斷變化,在機電一體化的系統中開始廣泛使用智能系統,其在機電一體化技術的成長過程中特別是在現時期有著舉足輕重的地位,同時也將進一步促進機電一體出現飛躍的發展。本文從機電一體化及智能系統的視點動身,將這兩部分進行融合,剖析研究機電一體化體系中智能操控的使用。需注意的是,雖然中國機電一體化系統在農業領域及工業領域中起著舉足輕重的作用,但其在實際工程過程中面臨的對象存在不確定性、多層次及非線性等特點,從而給該系統的發展造成了很多阻礙。伴隨著智能控制系統的使用給該系統帶來了良好的外部環境,有利于其科學發展。所以在機電一體化系統中智能控制逐步受到各領域的關注重視,對其進行相關分析研究是需要的。
1機電一體化系統的概述及定義
1.1機電一體化系統的含義
機電一體化系統又被稱作機械電子學,其具體內容是由多種技能進行有機結合,且在實際工作生活中進行歸納綜合應用的一種綜合性技能。其所有機融合的多種技術主要包括以下幾種:信號改換技能、傳感器技能、電工電子技能、接口技能、信息技能、微電子技能及機械技能等。
1.2機電一體化系統的基本內容原則要求組成要素
該系統的基本內容主要包括6個環節,即:a)計算機與信息技能;b)自動操控技能;c)機械技能;d)系統技能;e)伺服傳動技能;f)傳感檢查技能。機電一體化系統的基本原則要求主要包括4個方面,即:a)能量變換;b)構造耦合;c)構造耦合;d)運動傳遞。機電一體化系統的基本構成要素主要包括4個方面,即:a)感知構成要素;b)結構構成要素;c)運動構成要素;d)功能構成要素[1]。
2機電一體化在煤礦機械上的應用和前景
2.1煤礦機械
增加機電一體化技術含量,提高煤礦企業生產能力。機電一體化可把有關煤炭生產的各種機械與技能科學的進行有機結合,同時將其在煤炭企業生產過程中進行綜合應用。這些機械與技能有很多種,主要包括:微電子技能、傳感器技能、信息變換技能、電子電工、接口技能等。在煤礦機械上的應用機電一體化可依據煤炭企業生產關鍵點及技能要求對相應機械設備進行設計,或對某些技術技能進行改革完善。同時,應用機電一體化還可借助智能化的操控系統從而不斷增加機電一體化技術含量,有效提高煤礦企業生產能力。
2.2有效提高煤礦企業實際的生產效益
機電一體化本身具有很多特性,采煤機械具備良好的牽引能力便是其中之一。在煤礦的采煤過程中,采煤機行走時可為其提供較大的牽引力,幫助其有效攻克移動前進過程中遇到的阻力,同時還可在采煤機變頻降速時進行有效制動。在煤礦機械上的應用機電一體化可把煤礦企業的能量、物流及信息融為一體,從而進一步提升整個煤礦企業實際的生產能力,有利于煤礦企業在不久的將來走向高效、安全及可持續發展道路[2]。
3智能控制的概述及定義
3.1智能控制的含義
智能控制其本質指的是在沒有人進行干預的狀況下,可自主自立地驅動相關智能機械做到對目標進行有效操控的一類自動操控技能。其是借助計算機進行人類智能擬的一類重要范疇,主要針對比以往傳統控制更加復雜多樣的操控任務和目的,給目前中國社會各大領域的發展提供了更加廣泛的適應空間,同時有效解決了傳統操控不能完成的復雜體系的操控。以往傳統的操控僅歸屬于智能操控的一個簡單環節,是智能操控最底層的組成部分。智能操控的理論基礎有很多,如主動操控論、信息論、人工智能及運籌學等。其屬于一項由多種學科彼此相互穿插所構成的學科。
3.2智能控制的基本特征
智能控制的基本特征主要包括以下7個方面,即:a)其具有組織性特點,核心主要是由高層來進行有效控制的;b)智能操控具有變構造特色;c)其智能控制器具備非線性的特點;d)智能操控系統可達到多樣性方針的高性能要求;e)智能操控系統具備總體自尋優的特點;f)智能操控系統屬于一種新興的研討課題;g)智能操控系統歸屬于一種邊緣交叉的學科。
3.3智能控制的基本類型
智能控制的基本類型主要包括以下7個方面,即:a)專家操控體系(ExpertSystem);b)進化核算與遺傳算法;c)人工神經網絡操控體系;d)組合智能操控辦法;e)分級遞階操控體系;f)復合(混合)或集成操控;g)學習操控體系。
3.4智能控制的發展趨勢
這些年,智能操控技能在世界上很多國家都取得了較大的發展,甚至很多已進入實用化及工程化的時期。不過智能操控技能作為一種新式的理論技能,目前依然處于發展階段。但伴隨著計算機技能及人工智能技能的快速成長,智能操控也一定會在不久的將來走進一個屬于它的新時期。機電一體化系統中往往會應用很多技能,其中最常用的便是神經網絡、專家體系及遺傳算法等相關技能,這些技能彼此之間相輔相成、相互依存。而目前機電一體化方面未來的主要發展趨勢便是廣泛使用智能控制系統,因為其具備很多良好的特性,有利于機電一體化健康發展,如其具備極強的適應性、組織性功能及學習功能等[3]。
4智能控制在機電一體化系統中的應用
自20世紀90年代后期開始,機電一體化系統開始往智能控制方向發展,從而打開了機電一體化系統應用智能控制的新時代,該系統將來發展的主要方向一定是以智能化為主,其將直接影響到機電一體化系統的全體水平。
4.1智能控制在機電一體化系統機械制造過程中的應用
機電一體化系統中包括很多環節,其中機械制造便是重要的環節之一,把計算機輔佐技能和智能操控技能進行有機融合的技術便是目前最領先的機械制作技能,往智能控制方向發展,借助科學的計算機技能來代替部分腦力勞動,來模仿人們有關機械制作的行動,這是其最終的意圖目標。同時,智能操控技能可借助神經網絡體系的核算方式來動態模擬制作機械的詳細過程。對所搜集到的數據經過傳感器融合技能來進行預處理,然后操控修正模式中的有關參數數據。智能操控在機械制作中的應用環節有很多,其中主要包含以下幾種:智能學習、智能監控與檢查、智能診斷機械故障及智能傳感器等。
4.2智能控制在機電一體化系統數控領域中的應用
伴隨著中國社會主義科學技術的快速發展,各大領域對機電一體化系統的數控技能也逐漸有著越來越高的要求標準,不但需要其實現很多智能功能,還需要其具有模仿、延伸及拓展等新的智能功能,從而促使其數控技能完成智能監控、建立智能數據庫及智能編程等意圖,在機電一體化系統中的科學應用智能操控技能就可完成這些任務。例如借助專家系統能綜合解決數控領域里的很多問題,如難以確定及結構不明確的算法等;使用推理規則可有效推理數控現場的部分數控故障熟悉信息,得到某些指導性建議從而有利于數控機械的維修等。
4.3智能控制在機電一體化系統機器人領域中的應用
機器人在動力系統中存在很多自身的特點,如時變性、強耦合及非線性等,而多邊變性及多任務性是機器人在控制參數的系統容易體現的特征。這些特點有利于智能操控技能的使用。現在機電一體化系統機器人領域中使用智能操控技能主要體現在下面四大環節:a)機器人在視覺處理及多傳感器信息融合這兩方面能實現智能操控;b)可智能控制機器人的手臂動作及相關姿態;c)經過專家操控體系可科學定位、建模、計劃及監測機器人所處的運動環境,從而進行相關的控制及探究;d)可以智能控制跟蹤機器人的行走軌跡及走路等。
4.4智能控制在機電一體化系統建筑工程中的應用
智能控制在機電一體化系統建筑工程中的使用主要體現在以下兩個環節,即:a)能智能操控建筑物內的空調,例如能智能控制有關空調的風閥,不僅能有效保證建筑內空氣質量,還能大幅度減少浪費能量的現象發生;同時還可經過比例積分來對其閉環方法進行調整,從而有效設置在冬季和夏季時空調的使用模式;b)可經過計算機聯網和通信實現智能操控所有照明系統,如智能操控照明體系的節能、照明時刻及照明邏輯等。
4.5智能控制在煤礦機電一體化系統中的應用
煤礦機械所處工作環境一般情況下比較惡劣,往往都是在井下進行作業,從而導致煤礦機械容易被惡劣的環境侵襲,同時還可能會遭受各種采煤沖擊及振動的干擾。由此可知,井下作業具有某種程度的危險性,同時還需要煤礦機械能適應各種環境并達到高產的要求。而應用智能控制技術就可將井下作業的危險性大幅度降低,從而在某種程度上確保其安全性。
5結語
由20世紀90年代后期以來,機電一體化系統已逐步開始往智能控制方向發展。針對智能控制在機電一體化系統中的應用做了詳細講解,闡述了有關機電一體化系統的概述定義、原則要求、基本內容及組成要素等。介紹了智能操控的概述及定義、基本類型、發展趨勢及基本特征。在機電一體化系統中很多領域都可使用智能控制系統,如:煤礦機電、機器人領域、數控領域、統建筑工程及機械制造過程等。
作者:龐海龍 單位:同煤集團機電管理處
參考文獻:
[1]田永利,鄒慧君,郭為忠,等.基于DPAM-F的機電一體化系統廣義執行機構子系統智能設計[J].上海交通大學學報,2005(1):66-70.
[2]王殿君,申愛明,朱加雷,等.柔性制造系統在機電一體化專業綜合訓練中的應用[J].安徽師范大學學報(自然科學版),2010(6):554-557.
[3]吳乃優,林樺,馬衛國,等.大慣量調速系統機械諧振現象研究及其在機電一體化產品設計中的應用[J].天津師大學報(自然科學版),1993(1):28-32.
- 上一篇:機電一體化技術專業就業崗位探討
- 下一篇:5G移動通信發展趨勢