電氣技術難點探討論文

時間:2022-06-22 10:08:00

導語:電氣技術難點探討論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

電氣技術難點探討論文

摘要:本文主要討論了共同溝建設中電力、電訊管線共溝時的電磁干擾問題以及電力事故災害的防護及改善措施。

關鍵詞:共同溝電磁干擾電力事故

1、引言

所謂共同溝(城市綜合管溝)是指將兩種以上的城市管線集中設置于同一人工空間中,所形成的一種現代化、集約化的城市基礎設施。利用城市地下空間建設共同溝以鋪設城市生命線設施,不但可以減少對城市道路的反復開挖以及由此而引起的對城市正常交通秩序的巨大沖擊,并且可以形成良好的城市景觀。根據日本阪神地震的防災抗災經驗說明,共同溝對于城市綜合防災能力的提高有著非常顯著的作用。

共同溝的建設已成為二十一世紀城市現代化建設的趨勢和潮流,如東京、莫斯科、巴黎等國際著名大都市都建有數百公里長的共同溝,我國上海市也在浦東新區的商業干道張楊路建成了國內第一條現代化的共同溝,隨后,上海又建設了嘉定區安亭新鎮共同溝,深圳市建設了大梅沙—鹽田坳共同溝隧道,國內其它一些城市也在建設不同規模的共同溝。

雖然發達國家的共同溝建設已有百余年的發展歷史,但在我國還處于探索階段,加之國家尚無專門的設計規范,所以對于共同溝建設中的一些技術難點,為提出符合我國實情的解決方案,需要作深入的研究和探討。本文主要討論電力與通信纜線共溝時的相互干擾問題以及電力事故災害的防護對策及改善措施。

2、電力與通信纜線的相互干擾問題

一般而言,共同溝中總是收容電力與通信電纜,由于傳統的通信電纜大多為同軸電纜,所以按照傳統的認識和作法,因兩者之間存在嚴重的電磁干擾。我國的相關設計規范規定,兩者不能共同鋪設,既使要共同鋪設,又必須保持一定的凈距。如果按此規范的要求達到共同溝的橫斷面設計,必將極大地增加共同溝的橫斷面尺寸,導致造價的上升并引起不必要的經濟損失。

由于科學技術的進步,目前作為信息傳輸載體的介質,已越來越多地采用了光纜,而材料的革命,徹底解決了兩者的共同問題,即信息管線介質為光纜時,兩者間的相互干擾問題可以忽略不計,無需采取特殊的技術措施,就可以共同鋪設。從總體而言,以光纜作為信息傳輸的物質載體,已成為21世紀信息革命的趨勢和潮流,但完全普及還需時日。

當采用同軸電纜作為信息傳輸的物質載體時,可以通過以下的技術方案,來消除電力與通信電纜間的電磁干擾問題。

共同溝內通信線路最易遭受電磁干擾,因為一方面通信屬于弱電信號系統,對雜散信號的限制最為嚴格,另一方面電力與通信線路往往需長距離的并行,會累積電磁感應電壓。但共同溝內電力、通信共溝是必然趨勢,因為電力、通信共溝一者可減少內部空間,節省投資,二者便于管理。因此首先必須解決電力系統對通信系統的干擾問題。

電磁干擾來自于磁場的縱向感應電壓,此電壓與負載電流、互感阻抗、不平衡率、電力電纜屏蔽系數、通信電纜屏蔽系數及背景磁場屏蔽等成正比,每項的減少將減少磁場的縱向感應電壓,其中負載電流及不平衡率決定于用電狀況,本研究已考慮其最大值,無法通過共同溝的規劃改善,其余各項可通過電纜布置及加強屏蔽等措施加以改善,說明如下:

2.1電纜布置策略

電纜布置影響各電纜相互的空間關系,這種空間關系將影響互感阻抗,互感阻抗有零序互感阻抗和正序互感阻抗。若距離變大,則零序互感阻抗變小,有助于減少干擾;正序互感阻抗取決于各相電力電纜與被干擾線路距離的比值,此比值愈接近于1即被干擾線路與每相電力電纜愈等距離,則干擾愈小,若完全等距離(比值為1),則無正(負)序互感阻抗。因此,“最大距離”與“等距離”是電纜布置的兩大原則,其措施如下:

(1)電力電纜與弱電(60V以下)系統的線路(特別是通信線路)應盡可能維持最大距離。

(2)同回路的各條電力電纜線應緊靠配置。

(3)三相電纜采用正三角形配置。

(4)同回路所有帶電導線纏繞或完全換位。

(5)盡可能采用多芯電力電纜,將同回路所有相導體、中性導體及接地線容納在同一條電纜內。

以上(1)(2)兩項是基本措施,是必須要實施的項目,(3)至(5)項當有必要時擇一實施,即當通信與電力電纜長距離平行,且平行長度超過一定值時才有必要實施,對于非多重系統接地的電力電纜(一般低壓、35KV及110KV),只要實施(3)至(5)中的一項,可完全免除干擾憂慮。

2.2加強屏蔽措施

增設各種導體,可改善磁場屏蔽效果,其原理主要是產生感應電流磁場以抵消部分干擾源磁場。

通常情況是增設三相屏蔽導體,屏蔽導體互連且多重接地,此時磁場感應屏蔽作用相當顯著。理論和實踐證明,在三相電力系統中增加互連且多重接地的屏蔽導體來改善磁場屏蔽效果的措施是可行的,這可從干擾者(電力電纜),被干擾者(通信電纜)及背景環境(共同溝結構)三方面來實施:

2.2.1電力電纜加強屏蔽的措施

(1)屏蔽層或中性導體直接并聯導體,且互連多重接地。

(2)使用導體材料(金屬材料)做電流架或電纜槽,此金屬架(槽)必須在縱方向電性連接良好且實施多重接地。

2.2.2通信光纜加強屏蔽的措施

(1)增加專用屏蔽導線,此導線應多重接地。

(2)同2.2.1項的(2)款。

2.2.3共同溝結構屏蔽措施

(1)溝體結構鋼筋做良好的電性連接,使用焊接或熔接技術,連接溝體鋼筋。尤其在縱方向的主鋼筋應實施此種連接。

(2)預埋接地導線,可使用裸銅線埋設于溝體底部,一方面做屏蔽導體,一方面提供各種接地連接,效果最為顯著。

以上各項措施配合現場需要實施,基本上管道長度超過干擾安全長度時,才有必要擇一實施;只有溝體結構的屏蔽措施,只要有22KV以上的高壓電纜時就應實施。

3、電力事故災害的防護對策及改善措施

共同溝內的電力事故,主要是指接地故障造成的人員及其他管線傷害的問題,至于電纜縱向感應電壓所造成的端末設備障礙問題,因其安全長度大于干擾安全長度,故在解決干擾問題時即可同時解決本問題,且電纜接地措施可免除縱向感應電壓對人員的接觸電壓傷害,故電力事故災害的防護措施應以防范接地故障相關問題為重點,主要包括:

(1)人員安全的防護;

(2)高壓閃絡及爆裂的防護;

(3)漏電的防護。

針對這些問題的防護策略及措施說明如下:

3.1人員安全的防護

對人員安全的威脅主要來自“接觸電壓”和“跨步電壓”,這兩種電壓皆因較大的地電流導致共同溝內各處均可能有電位差的存在,一旦此電位差出現在人員手足之間則可能造成接觸電壓傷害,而若出現在雙足之間則可能造成跨步電壓的傷害。防止此事故發生可由減少地電流、消除電位差及加強絕緣三方面進行,前者是通過各種“地電流的疏導措施”減少接地故障電流流入溝內結構物,消除電位差的做法是使人員與接觸物之間加強絕緣阻抗以阻止電流流入人體造成傷害,具體說明如下:

3.1.1地電流疏導措施

接地故障電流必須流回電源端(變壓器室),此流回的路徑(回路)若經過地中或地面,則人員亦受傷害。因此,若能減少流入地中的電流量,則可增進人員的安全,其措施是加強電力電纜對接地故障電流分流的能力,通過各種導體與電纜中性導體、屏蔽導體鎧裝導體管的并聯,即可加強分流能力,而消除電磁干擾中的加強屏蔽措施正合乎此項要求,即可同時減少干擾并增進安全。

3.1.2同電位措施

(1)作場所妥善接地配置

在人員施工時有可能出現高電位差的地方增設接地網(或鋪金屬板),并將此接地網或金屬板與高壓電纜屏蔽導體、中性導體、管溝墻壁鋼筋、通信光纜屏蔽導體及其他各種金屬管線的接地導體互連,形成同電位,人員工作場所的接地電阻亦應盡量降低。

(2)人員穿導電衣褲、手套及鞋

施工人員穿著互連性好的導電衣褲及手套和導電鞋則可維持身體各部位同電位,當接地故障發生時,電流流過導電衣褲形成的回路,不經過人體可確保人身安全,但此項措施不能影響施工。

3.1.3加強絕緣措施

在可能出現高電位差的位置通過加強絕緣,可使流入人體的電流減少,而增強人員的耐壓能力,其措施如下:

(1)工作場所加強絕緣措施

在高危險場所鋪設絕緣材料(例如塑膠地板)可大量增加接觸電阻而提高人員對接觸電壓和跨步電壓的耐受度。

(2)穿絕緣鞋及手套措施

此亦可增加接觸電阻,提高接觸電壓和跨步電壓的耐受度,通常只要穿絕緣鞋和戴絕緣手套,即可確保人員安全。

3.2高壓閃絡及爆裂的防護對策

高壓電纜絕緣破壞時,造成接地故障,有大電流及高壓存在,高壓可能會對鄰近其它管線產生閃絡(Flashover)并可能產生高熱而出現爆裂現象,此可能破壞鄰近管線??砂聪铝写胧┍苊饣驕p少破壞:

(1)與高壓電纜拉大距離;

(2)用防爆隔板隔開高壓電纜與其他管線;

(3)高壓電纜使用專用管線槽;

(4)采用分室配置,將高壓電纜與其他管線隔開;

(5)上列措施基本上是針對60KV以上的電纜提出,但較安全的評估原則是35KV以上的高壓即應考慮擇一實施。

3.3漏電保護

漏電現象基本上是一種高阻抗接地故障,因電流不大,不易由電力系統的斷路器切離,故往往使漏電持續存在而不知,一旦人員碰觸即造成傷害,防范漏電傷害應由下列幾項措施來加以彌補:

(1)警示標志措施

在有高壓電纜的場所應明確標示其位置及各種注意事項和安全措施。

(2)安裝漏電探測器和報警器

在人員進出和施工場所裝設漏電探測器和報警器,一旦有漏電即可進行處理。

(3)加強維護檢查

施工前的漏電檢測,接地檢查及環境維護工作,如積水排除、防止動物進入溝內等皆可進一步加強漏電保護。

4.結束語

電力、通信管線共溝的共敷問題是共同溝建設中的一個難題,目前國內已建成的幾段共同溝,幾乎都沒有把電力、通信管線共溝敷設,因為其電磁干擾問題難以解決。受深圳市國土規劃局委托,筆者于2001年做了《深圳市共同溝可行性研究報告》,幾年來,對國內外共同溝做了深入研究,借鑒了國外(主要是日本)的先進經驗,對此問題做了探討,提出了相應的解決措施,并對共同溝內電力事故的防災問題提出了相應的處理措施。希望能對國內共同溝的發展有所幫助。

參考文獻

[1]GB50217-94,電力工程電纜設計規范[S].

[2]GBT/T50311-2000,建筑與建筑群綜合布線工程系統設計規范[S].

[3]共同溝設計指針[Z]日本.

[