集成電路設計的方法范文
時間:2023-10-12 17:18:04
導語:如何才能寫好一篇集成電路設計的方法,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。
篇1
關鍵詞:模擬集成電路;基于方程的優化方法;基于仿真的優化方法;誤差增量模型
中圖分類號:TP393 文獻標識碼:A 文章編號:2095-1302(2017)05-0-02
0 引 言
模擬集成電路設計通常分為三個步驟[1-3]:首先根據電路性能要求選擇合適的電路拓撲結構,然后設計電路參數,最后設計版圖并驗證。而最為重要的是前兩步。在選好一個電路拓撲結構后,如何完成電路的參數設計,即根據預期的電路性能參數來確定電路中器件尺寸、電阻、電容等參數的取值非常重要。傳統的設計方法首先根據電路設計指標列出方程,從方程中計算尺寸并進行仿真。如果所得結果不符合要求,則需更改方程得到新的器件尺寸繼續調試,不斷重復直至符合電路要求。這一過程繁瑣、冗長且難以保證結果,是模擬電路設計效率難以提高的主要原因。
目前,電路領域提高電路設計效率的方法主要是基于優化的方法。基于優化的方法是將電路性能指標作為優化的目標函數,利用函數優化的方法來完成電路設計。一般優化設計方法有兩種,即基于方程的優化和基于仿真的優化。基于方程的優化中目標函數由解析公式計算而得,雖然優化速度快但精度低。基于仿真的優化中目標函數通過電路仿真獲得,雖然精度高,但計算量大,優化速度慢。
如何獲得精度與基于仿真方法相當的準確解,又使計算量不致過大,是近年來電路優化研究領域備受關注的課題。人們雖采用多種方法嘗試,但最常見的是先構造電路性能指標的宏模型,再進行優化。宏模型的計算相當于一個解析式的計算,因此可較快完成,只要宏模型構造得當,精度可達到與仿真接近的程度。需要研究的主要問題是宏模型的形式,如簡單多項式、統計回歸、神經網絡與模糊邏輯、SVM等,及宏模型的構造算法。
本文采取的方法是一種基于方程與誤差增量模型的混合優化方法,可大幅減少仿真器的調用次數,降低計算成本,同時又具備與基于仿真方法幾乎相同的精度。方法的主要思想是以基于方程的優化結果作為出發點,通過構造電路性能準確值與解析近似之間的差值增量模型,求解一系列誤差不斷減小的近似優化問題,通過迭代逐步獲得問題的準確解;每一次迭代在上一次優化解附近構造新的差值增量模型再調用優化算法,相當于采用基于方程的方法求解,因此速度很快;電路仿真只在構建誤差增量模型時需要,而一次迭代解附近的誤差增量模型一般用二次多項式近似即可,因此所需仿真次數不多。整體上可達到既減少仿真次數,又不影響精度的目的。我們稱這種方法為基于誤差增量模型的優化方法。
1 基于誤差增量模型的優化
電路性能指標的解析表達雖然存在誤差,但大致反映了性能隨設計變量的變化情況。將其準確值表達為:
f(x)=fa(x)+fd(x) (1)
其中,fa(x)是性能的近似解析表達,fd(x)=f(x)-fa(x)是誤差增量。基于這一表達,本文提出的基于方程與基于仿真的混合優化方法如下:
(1)用基于方程的方法進行一次初始優化,即求解:
(2)
獲得一個近似最優解x0作為初始點;
(2)在點xk附近構造電路性能準確值與解析近似之間的誤差增量模型,包括目標函數:
(3)
與約束函數:
(4)
由于只需在一點附近的增量誤差近似,因此通常用二次插值即可構造這一模型[4]。
(3)求出如下題的最優解:
(5)
這一步的優化目標與約束函數均是解析計算,因此可以很快完成。
(4)重復步驟(2)、(3),直至該過程收斂。
這種混合優化方法的基本思想從基于方程的近似最優解出發,通過迭代逐步消除誤差,與一般非線性問題的迭代求解類似。該方法的特點在于充分利用了電路的性能解析表達式。解析表達雖有誤差,但包含了目標與約束函數的基本特性,反映了函數變化的總體趨勢,降低了每次迭代時誤差增量函數的復雜性,可用較簡單的函數形式近似,也有利于設計者更好地理解優化過程。該方法既改善了電路性能解析表達式精度不高的問題,又可大幅減少仿真器調用次數,提高優化效率。
2 兩級運放設計實例
以一個帶米勒補償的兩級運放為例,說明利用該方法進行優化設計的過程。電路采用TSMC 0.35 μm工藝,其中CL=3 pF,VDD=2.5 V,VSS=-2.5 V,電路要求的性能指標見表3所列,考慮到的性能指標有功耗(Power),單位增益(Av),單位增益帶寬(UGB),擺率(SR)以及相位裕度(PM)。CMOS兩級運算放大器電路如圖1所示。兩級運放性能指標見表1。
圖1 CMOS兩級運算放大器電路
表1 兩級運放性能指標
性能
指標 Av PM UGB Power SR Area
設計
要求 >70 dB >65° >10 MHz 10 V/μs
對該電路,性能的近似表達式為[5-8]:
SR=I5/Cc
Power=(VDD-VSS)?(I5+I7+IBias)
AV=gM1?gM6/((gds1+gds3)?(gds6+gds7)) (6)
Area=2?W1?L1+2?W3?L3+W5?L5+W6?L6+W7?L7+W8?L8
UGB=ωc/2π
PM=180°-tan-1(ωc/p1)-tan-1(ωc/p2)-tan-1(ωc/z1)
f3db=p1/2π
Ω玫緶方行優化設計,采用Matlab工具箱中的約束優化工具fmincon,將功耗作為目標函數,表1中的其他性能指標作為約束條件,做基于方程的優化。為保證電路正常工作,需要對電路中的晶體管添加約束。對于NMOS管,有:
Vds≥Vgs-VT>0 (7)
對于PMOS管:
-Vds>VT-Vgs>0 (8)
除此之外晶體管需滿足工藝庫對器件尺寸的要求:
Wi≥1 μm, i=1,2,…,8
Wi≤195 μm, i=1,2,…,8
之后,利用誤差增量模型進行優化設計,并以一次基于仿真的優化設計作為比較。基于方程的優化設計見表2所列,方程和誤差增量模型的混合優化設計見表3所列,基于仿真的優化設計見表4所列。
表2 基于方程的優化設計
電路性能 參數 器件尺寸 參數(μm)
UGB 9.66 MHz W1 2.94
Power 0.40 mW W3 5.30
PM 63.32° W5 5.52
Av 72.58 dB W6 66.79
SR 10.00 V/μs W7 46.59
Area 146.40 μm2 W8 6.06
表3 方程和誤差增量模型的混合優化設計
電路性能 參數 器件尺寸 參數(μm)
UGB 10.00 MHz W1 2.81
Power 0.43 mW W3 8.73
PM 65.00° W5 5.53
Av 72.89 dB W6 131.28
SR 10.00 V/μs W7 57.12
Area 223.10 μm2 W8 6.06
表4 基于仿真的優化設計
電路性能 參數 器件尺寸 參數(μm)
UGB 10.00 MHz W1 2.80
Power 0.44 mW W3 8.84
PM 65.00° W5 5.53
Av 72.89 dB W6 132.73
SR 10.00 V/μs W7 57.14
Area 224.78 μm2 W8 6.06
可見,利用基于仿真和方程的混合優化方法可以得到和完全基于仿真方法相近的結果。且通過表5可以看出,混合優化方法減少了仿真器的調用次數,提高了優化效率。
表5 混合設計和基于仿真設計的F-count比較
混合優化設計方法 基于仿真優化設計方法
F-count 136 335
3 結 語
本文提出了一種基于方程和誤差增量模型的混合優化方法,即通過對性能誤差建立二階模型來建立新的性能方程。再采用Matlab的優化工具箱進行基于方程的優化。本文通過運算放大電路優化實例來驗證該方法的有效性,且相較于基于仿真的優化方法減少了調用Hspice的次數,節約了時間。
參考文獻
[1] B.Razavi. Design of analog CMOS integrated circuits[M]. McGraw-Hill Comp., 2001.
[2]代揚.模擬集成電路自動化設計方法的研究[D].長沙:湖南大學,2004.
[3]陳曉.工作點驅動的模擬集成電路優化設計方法研究[D].杭州:杭州電子科技大學,2015.
[4] RM Biernacki,JW Bandler,J Song,et al. Efficient quadratic approximation for statistical design[J].IEEE Transactions On Circuits And Systems,1989,36(11):1449-1454.
[5] Metha Jeeradit.Mixed Equation-Simulation Circuit Optimization[D].For The Degree Of Doctor Of Philosophy,2011.
[6] V Gewin. Space Mapping:The State of the Art[D]. IEEE Transactions On Microwave Theory And Techniques,2012,22(6):639-651.
篇2
關鍵詞 模擬集成電路設計;理論與實踐相結合;仿真實驗
中圖分類號:G642.4 文獻標識碼:B
文章編號:1671-489X(2013)30-0095-02
集成電路設計相關課程體系是各高等院校電子科學與技術、電子信息科學與技術等工科專業核心專業課程設置的重要組成部分,為大學生深入學習掌握集成電路設計的基本原理、分析方法、仿真方式等打下基礎。大多數理工科高校對電子類專業開設模擬集成電路設計和數字集成電路設計的課程,對學生進行綜合培養。對于模擬和數字集成電路設計,如果要深入到晶體管級進行分析和設計,那都必須進行原理的深入學習。而在現實工作中,數字集成電路設計主要是通過運用高級硬件電路描述語言基于門級對電路進行設計,晶體管級的原理分析只是理論基礎。模擬集成電路設計則必須完全深入晶體管級進行分析和設計,所以模擬集成電路設計更加繁瑣和復雜,對理論分析的要求也更高。
本文通過筆者多年來在模擬集成電路設計理論和實踐教學中積累的經驗和教學心得,對如何在繁瑣和復雜的教學中使學生更好地掌握知識體系進行探討。
1 教材的選擇
1.1 國外經典教材的參考
集成電路的設計國外特別是美國要領先中國幾十年的技術水平,如絕大多數高精尖端的芯片都是被INTEL、AMD、TI、ADI這樣的跨國巨頭所壟斷,在教學知識體系方面自然是美國的高校如斯坦福、加州大學等要比國內高校更加系統和完善。美國出版的多本教材更是被奉為集成電路設計的圣經,如拉扎維編著的《模擬CMOS集成電路設計》、艾倫編著的《CMOS模擬集成電路設計》等。但是即使是被奉為圣經的教材,雖然經典,也有其局限性。如拉扎維編著的《模擬CMOS集成電路設計》對電路的理論分析非常透徹且深入淺出,卻缺乏相應的仿真實驗來驗證其理論分析;而艾倫編著的《CMOS模擬集成電路設計》雖有部分仿真實驗來驗證其理論分析,但其理論分析又不如拉扎維的教材那么透徹和深入淺出。
1.2 國內教材的選擇
國內的高校雖然較國外高校而言在集成電路設計領域起步要晚,差距也很大,但是在近些年國家政策的大力扶持下,已經有了突飛猛進的發展。國內也有了幾本模擬集成電路設計知識講解得比較透徹的教材,比如:清華大學王自強編著的《CMOS集成放大器設計》就從簡單知識入手,講解淺顯易懂;東南大學吳建輝編著的《CMOS模擬集成電路分析與設計》分析比較透徹,講解自成體系。但是國內出版的教材也都缺乏相應的仿真實驗來驗證其理論分析。
針對國內學生在集成電路設計知識領域基礎比較差的現狀,可以選擇國內講解得比較簡單淺顯的教材為主線,并以國外經典教材為參考。
2 教學方法的改進
模擬集成電路設計作為電子科學與技術專業的一門專業核心課程,比某些專業基礎課程如電路原理、數字電子技術、模擬電子技術等要難度更大,也更為繁瑣和復雜。如果按照傳統方式進行講解,或者說僅僅是按照教材進行理論分析和推導,那么學生很難對這門知識深入理解和掌握。因此,在教學理論知識的過程中,穿教材中沒有的、可以驗證其相應理論的仿真實驗,這樣能夠更好地使學生理解和掌握理論知識。
2.1 以HSPICE仿真實驗為輔助
SPICE是一種可以用于電路仿真的工具,大家所熟知的有PSPICE,它是一種可以適用于分立原件的電路仿真工具,而HSPICE是在集成電路設計領域專業使用的高精度的仿真工具。專業的集成電路設計公司和研究所都是使用UNIX或LINUX環境下的大型專業工具軟件進行集成電路設計仿真,而筆者所在高校因為在此領域起步較晚,專業開設也較晚,專業實驗室也并不具備,所以并不具備很好的實驗條件來進行實驗輔助教學。因為HSPICE具有可以在Windows環境下方便使用的小型版本的軟件,所以可以很方便地用在課堂教學中。
2.2 理論與實踐相結合教學
在繁瑣復雜理論分析和推導的過程中,不斷地穿HSPICE仿真,來驗證理論分析和推導的結果,可以讓學生顯著加深對理論的理解和掌握。HSPICE仿真部分的內容是清華、復旦、東南大學等高校教師出版的教材里面都沒有詳細講解的內容,也是他們課堂理論講解過程中不會涉及到的知識。而在筆者所在高校以HSPICE仿真實驗為輔助,結合理論教學后,取得了積極顯著的教學效果,學生對理論知識的理解和課程考試成績都得到了大幅度的提升。以2008級到2010級電子類專業的學生為例,模擬集成電路設計課程考試得優率從22%提升到了43%以上,學生對此教學方法也是高度認同。
3 結束語
在我國大力實行人才戰略,強調人才培養的大環境下,筆者所在高校也響應國家號召,加強本科生培養,實施卓越工程教育,取得積極可喜的成績。國家在近些年大力支持集成電路設計的產業發展,國內在此領域也有了長足進步,但也更加需要更多的專業人才來滿足市場需求。在此背景下,本文積極探索和提高模擬集成電路設計的教學方法,取得長足的進步和發展,也得到學生的高度認同。筆者希望自己的經驗和方法可以為兄弟院校相關專業的教學提供參考和借鑒。
參考文獻
[1]Lazavi.模擬CMOS集成電路設計[M].西安:西安交通大學出版社,2003.
[2]Allen P E.CMOS模擬集成電路設計[M].2版.北京:電子工業出版社,2011.
[3]王自強.CMOS集成放大器設計[M].北京:國防工業出版社,2007.
篇3
關鍵詞:集成電路設計;版圖;CMOS
作者簡介:毛劍波(1970-),男,江蘇句容人,合肥工業大學電子科學與應用物理學院,副教授;汪濤(1981-),男,河南商城人,合肥工業大學電子科學與應用物理學院,講師。(安徽?合肥?230009)
基金項目:本文系安徽省高校教研項目(項目編號:20100115)、省級特色專業項目(項目編號:20100062)的研究成果。
中圖分類號:G642?????文獻標識碼:A?????文章編號:1007-0079(2012)23-0052-02
集成電路(Integrated Circuit)產業是典型的知識密集型、技術密集型、資本密集和人才密集型的高科技產業,是關系國民經濟和社會發展全局的基礎性、先導性和戰略性產業,是新一代信息技術產業發展的核心和關鍵,對其他產業的發展具有巨大的支撐作用。經過30多年的發展,我國集成電路產業已初步形成了設計、芯片制造和封測三業并舉的發展格局,產業鏈基本形成。但與國際先進水平相比,我國集成電路產業還存在發展基礎較為薄弱、企業科技創新和自我發展能力不強、應用開發水平急待提高、產業鏈有待完善等問題。在集成電路產業中,集成電路設計是整個產業的龍頭和靈魂。而我國集成電路設計產業的發展遠滯后于計算機與通信產業,集成電路設計人才嚴重匱乏,已成為制約行業發展的瓶頸。因此,培養大量高水平的集成電路設計人才,是當前集成電路產業發展中一個亟待解決的問題,也是高校微電子等相關專業改革和發展的機遇和挑戰。[1-4]
一、集成電路版圖設計軟件平臺
為了滿足新形勢下集成電路人才培養和科學研究的需要,合肥工業大學(以下簡稱“我校”)從2005年起借助于大學計劃,和美國Mentor Graphics公司、Xilinx公司、Altera公司、華大電子等公司合作建立了EDA實驗室,配備了ModelSim、IC Station、Calibre、Xilinx ISE、Quartus II、九天Zeni設計系統等EDA軟件。我校相繼開設了與集成電路設計密切相關的本科課程,如集成電路設計基礎、模擬集成電路設計、集成電路版圖設計與驗證、超大規模集成電路設計、ASIC設計方法、硬件描述語言等。同時對課程體系進行了修訂,注意相關課程之間相互銜接,關鍵內容不遺漏,突出集成電路設計能力的培養,通過對課程內容的精選、重組和充實,結合實驗教學環節的開展,構成了系統的集成電路設計教學過程。[5,6]
集成電路設計從實現方法上可以分為三種:全定制(full custom)、半定制(Semi-custom)和基于FPGA/CPLD可編程器件設計。全定制集成電路設計,特別是其后端的版圖設計,涵蓋了微電子學、電路理論、計算機圖形學等諸多學科的基礎理論,這是微電子學專業的辦學重要特色和人才培養重點方向,目的是給本科專業學生打下堅實的設計理論基礎。
在集成電路版圖設計的教學中,采用的是中電華大電子設計公司設計開發的九天EDA軟件系統(Zeni EDA System),這是中國唯一的具有自主知識產權的EDA工具軟件。該軟件與國際上流行的EDA系統兼容,支持百萬門級的集成電路設計規模,可進行國際通用的標準數據格式轉換,它的某些功能如版圖編輯、驗證等已經與國際產品相當甚至更優,已經在商業化的集成電路設計公司以及東南大學等國內二十多所高校中得到了應用,特別是在模擬和高速集成電路的設計中發揮了強大的功能,并成功開發出了許多實用的集成電路芯片。
九天EDA軟件系統包括ZeniDM(Design Management)設計管理器,ZeniSE(Schematic Editor)原理圖編輯器,ZeniPDT(physical design tool)版圖編輯工具,ZeniVERI(Physical Design Verification Tools)版圖驗證工具,ZeniHDRC(Hierarchical Design Rules Check)層次版圖設計規則檢查工具,ZeniPE(Parasitic Parameter Extraction)寄生參數提取工具,ZeniSI(Signal Integrity)信號完整性分析工具等幾個主要模塊,實現了從集成電路電路原理圖到版圖的整個設計流程。
二、集成電路版圖設計的教學目標
根據培養目標結合九天EDA軟件的功能特點,在本科生三年級下半學期開設了為期一周的以九天EDA軟件為工具的集成電路版圖設計課程。
篇4
關鍵詞:IP技術 模擬集成電路 流程
中圖分類號:TP3 文獻標識碼:A 文章編號:1674-098X(2013)03(b)-00-02
1 模擬集成電路設計的意義
當前以信息技術為代表的高新技術突飛猛進。以信息產業發展水平為主要特征的綜合國力競爭日趨激烈,集成電路(IC,Integrated circuit)作為當今信息時代的核心技術產品,其在國民經濟建設、國防建設以及人類日常生活的重要性已經不言
而喻。
集成電路技術的發展經歷了若干發展階段。20世紀50年代末發展起來的屬小規模集成電路(SSI),集成度僅100個元件;60年展的是中規模集成電路(MSI),集成度為1000個元件;70年代又發展了大規模集成電路,集成度大于1000個元件;70年代末進一步發展了超大規模集成電路(LSI),集成度在105個元件;80年代更進一步發展了特大規模集成電路,集成度比VLSI又提高了一個數量級,達到106個元件以上。這些飛躍主要集中在數字領域。
(1)自然界信號的處理:自然界的產生的信號,至少在宏觀上是模擬量。高品質麥克風接收樂隊聲音時輸出電壓幅值從幾微伏變化到幾百微伏。視頻照相機中的光電池的電流低達每毫秒幾個電子。地震儀傳感器產生的輸出電壓的范圍從地球微小振動時的幾微伏到強烈地震時的幾百毫伏。由于所有這些信號都必須在數字領域進行多方面的處理,所以我們看到,每個這樣的系統都要包含一個模一數轉換器(AD,C)。
(2)數字通信:由于不同系統產生的二進制數據往往要傳輸很長的距離。一個高速的二進制數據流在通過一個很長的電纜后,信號會衰減和失真,為了改善通信質量,系統可以輸入多電平信號,而不是二進制信號。現代通信系統中廣泛采用多電平信號,這樣,在發射器中需要數一模轉換器(DAC)把組合的二進制數據轉換為多電平信號,而在接收器中需要使用模一數轉換器(ADC)以確定所傳輸的電平。
(3)磁盤驅動電子學計算機硬盤中的數據采用磁性原理以二進制形式存儲。然而,當數據被磁頭讀取并轉換為電信號時,為了進一步的處理,信號需要被放大、濾波和數字化。
(4)無線接收器:射頻接收器的天線接收到的信號,其幅度只有幾微伏,而中心頻率達到幾GHz。此外,信號伴隨很大的干擾,因此接收器在放大低電平信號時必須具有極小噪聲、工作在高頻并能抑制大的有害分量。這些都對模擬設計有很大的挑戰性。
(5)傳感器:機械的、電的和光學的傳感器在我們的生活中起著重要的作用。例如,視頻照相機裝有一個光敏二極管陣列,以將像點轉換為電流;超聲系統使用聲音傳感器產生一個與超聲波形幅度成一定比例的電壓。放大、濾波和A/D轉換在這些應用中都是基本的功能。
(6)微處理器和存儲器:大量模擬電路設計專家參與了現代的微處理器和存儲器的設計。許多涉及到大規模芯片內部或不同芯片之間的數據和時鐘的分布和時序的問題要求將高速信號作為模擬波形處理。而且芯片上信號間和電源間互連中的非理想性以及封裝寄生參數要求對模擬電路設計有一個完整的理解。半導體存儲器廣泛使用的高速/讀出放大器0也不可避免地要涉及到許多模擬技術。因此人們經常說高速數字電路設計實際上是模擬電路的
設計。
2 模擬集成電路設計流程概念
在集成電路工藝發展和市場需求的推動下,系統芯片SOC和IP技術越來越成為IC業界廣泛關注的焦點。隨著集成技術的不斷發展和集成度的迅速提高,集成電路芯片的設計工作越來越復雜,因而急需在設計方法和設計工具這兩方面有一個大的變革,這就是人們經常談論的設計革命。各種計算機輔助工具及設計方法學的誕生正是為了適應這樣的要求。
一方面,面市時間的壓力和新的工藝技術的發展允許更高的集成度,使得設計向更高的抽象層次發展,只有這樣才能解決設計復雜度越來越高的問題。數字集成電路的發展證明了這一點:它很快的從基于單元的設計發展到基于模塊、IP和IP復用的
設計。
另一方面,工藝尺寸的縮短使得設計向相反的方向發展:由于物理效應對電路的影響越來越大,這就要求在設計中考慮更低層次的細節問題。器件數目的增多、信號完整性、電子遷移和功耗分析等問題的出現使得設計日益復雜。
3 模擬集成電路設計流程
3.1 模擬集成電路設計系統環境
集成電路的設計由于必須通過計算機輔助完成整個過程,所以對軟件和硬件配置都有較高的要求。
(1)模擬集成電路設計EDA工具種類及其舉例
設計資料庫―Cadence Design Framework11
電路編輯軟件―Text editor/Schematic editor
電路模擬軟件―Spectre,HSPICE,Nanosim
版圖編輯軟件―Cadence virtuoso,Laker
物理驗證軟件―Diva,Dracula,Calibre,Hercules
(2)系統環境
工作站環境;Unix-Based作業系統;由于EDA軟件的運行和數據的保存需要穩定的計算機環境,所以集成電路的設計通常采用Unix-Based的作業系統,如圖1所示的工作站系統。現在的集成電路設計都是團隊協作完成的,甚至工程師們在不同的地點進行遠程協作設計。EDA軟件、工作站系統的資源合理配置和數據庫的有效管理將是集成電路設計得以完成的重要保障。
3.2 模擬集成電路設計流程概述
根據處理信號類型的不同,集成電路一般可以分為數字電路、模擬電路和數模混合集成電路,它們的設計方法和設計流程是不同的,在這部分和以后的章節中我們將著重講述模擬集成電路的設計方法和流程。模擬集成電路設計是一種創造性的過程,它通過電路來實現設計目標,與電路分析剛好相反。電路的分析是一個由電路作為起點去發現其特性的過程。電路的綜合或者設計則是從一套期望的性能參數開始去尋找一個令人滿意的電路,對于一個設計問題,解決方案可能不是唯一的,這樣就給予了設計者去創造的機會。
模擬集成電路設計包括若干個階段,設計模擬集成電路一般的過程。
(l)系統規格定義;(2)電路設計;(3)電路模擬;(4)版圖實現;(5)物理驗證;(6)參數提取后仿真;(7)可靠性分析;(8)芯片制造;(9)測試。
除了制造階段外,設計師應對其余各階段負責。設計流程從一個設計構思開始,明確設計要求和進行綜合設計。為了確認設計的正確性,設計師要應用模擬方法評估電路的性能。
這時可能要根據模擬結果對電路作進一步改進,反復進行綜合和模擬。一旦電路性能的模擬結果能滿足設計要求就進行另一個主要設計工作―電路的幾何描述(版圖設計)。版圖完成并經過物理驗證后需要將布局、布線形成的寄生效應考慮進去再次進行計算機模擬。如果模擬結果也滿足設計要求就可以進行制造了。
3.3 模擬集成電路設計流程分述
(1)系統規格定義
這個階段系統工程師把整個系統和其子系統看成是一個個只有輸入輸出關系的/黑盒子,不僅要對其中每一個進行功能定義,而且還要提出時序、功耗、面積、信噪比等性能參數的范圍要求。
(2)電路設計
根據設計要求,首先要選擇合適的工藝制程;然后合理的構架系統,例如并行的還是串行的,差分的還是單端的;依照架構來決定元件的組合,例如,電流鏡類型還是補償類型;根據交、直流參數決定晶體管工作偏置點和晶體管大小;依環境估計負載形態和負載值。由于模擬集成電路的復雜性和變化的多樣性,目前還沒有EDA廠商能夠提供完全解決模擬集成電路設計自動化的工具,此環節基本上通過手工計算來完成的。
(3)電路模擬
設計工程師必須確認設計是正確的,為此要基于晶體管模型,借助EDA工具進行電路性能的評估,分析。在這個階段要依據電路仿真結果來修改晶體管參數;依制程參數的變異來確定電路工作的區間和限制;驗證環境因素的變化對電路性能的影響;最后還要通過仿真結果指導下一步的版圖實現,例如,版圖對稱性要求,電源線的寬度。
(4)版圖實現
電路的設計及模擬決定電路的組成及相關參數,但并不能直接送往晶圓代工廠進行制作。設計工程師需提供集成電路的物理幾何描述稱為版圖。這個環節就是要把設計的電路轉換為圖形描述格式。模擬集成電路通常是以全定制方法進行手工的版圖設計。在設計過程中需要考慮設計規則、匹配性、噪聲、串擾、寄生效應、防門鎖等對電路性能和可制造性的影響。雖然現在出現了許多高級的全定制輔助設計方法,仍然無法保證手工設計對版圖布局和各種效應的考慮全面性。
(5)物理驗證
版圖的設計是否滿足晶圓代工廠的制造可靠性需求?從電路轉換到版圖是否引入了新的錯誤?物理驗證階段將通過設計規則檢查(DRC,Design Rule Cheek)和版圖網表與電路原理圖的比對(VLS,Layout Versus schematic)解決上述的兩類驗證問題。幾何規則檢查用于保證版圖在工藝上的可實現性。它以給定的設計規則為標準,對最小線寬、最小圖形間距、孔尺寸、柵和源漏區的最小交疊面積等工藝限制進行檢查。版圖網表與電路原理圖的比對用來保證版圖的設計與其電路設計的匹配。VLS工具從版圖中提取包含電氣連接屬性和尺寸大小的電路網表,然后與原理圖得到的網表進行比較,檢查兩者是否一致。
參考文獻
篇5
(南京郵電大學電子科學與工程學院,江蘇 南京 210023)
【摘 要】本文從分析集成電路設計實踐教學的特點入手,對集成電路設計實驗中引入研究型實踐教學模式的必要性、作用分析及具體實施方法進行了具體探討,并提出了研究型實踐教學對老師、對學生的要求。
關鍵詞 實踐教學;集成電路
基金項目:南京郵電大學教改項目(JG03314JX17)。
作者簡介:夏曉娟(1982—),女,南京郵電大學,副教授,從事集成電路設計領域的教學與科研工作。
隨著教育改革的不斷深入,隨著我國電子信息技術飛速發展,迎來了空前的發展機遇。傳統集成電路設計和生產流程近年來已經發生了改變,且電子產品發展迅速,集成電路設計是與最前沿科技緊密相連的一個方向,相關的課程也應與前沿科技緊密相連,課程的學習更要注重理論聯系實際,培養學生的科學思維能力和分析問題解決問題的能力。因此,集成電路設計實驗應在傳統的實踐教學方法基礎上,在“研究型實踐教學模式”方面進行探討和實踐。“研究型實踐教學模式”是指在實踐教學中指導學生將所學理論知識用于行業實際問題分析的一種實踐方法,旨在培養學生創造性的運用知識、自主的發現問題、研究問題,并解決問題的能力[1-2]。
1 確立研究型實踐教學模式的必要性
集成電路(Integrated Circuit,IC)產業是信息產業的基礎和核心,隨著我國電子信息技術飛速發展,迎來了空前的發展機遇。傳統集成電路設計和生產流程近年來已經發生了改變,大多設計均采用無生產線設計,加工采用代工方式。成電路設計具有一定的特殊性,集成電路設計過程需要集成電路專業人才經過嚴格的實踐訓練并且積累一定的工程實踐經驗。全國集成電路設計相關企業對于人才的需要也越來越嚴格,越來越需要能力型的、具有創造力的人才,應聘的條件之一就是需要有集成電路設計的相關經驗。作為一般理工科院校集成電路專業的發展在一定程度上缺乏對集成電路設計應用型人才培養的認識。因此,我們應該改變傳統觀念,樹立IC設計研究型人才培養觀。
集成電路設計實踐主要是提供學生一個實踐平臺,采用先進的集成電路仿真軟件,將書本上的知識采用模擬的方法進行加深理解。實踐內容既是電路、模擬電子技術、數字電子技術以及課程設計中所學知識的應用,又是與最前沿科技緊密聯系的。而傳統的教學內容和教學模式,缺乏對學生創造力的培養,也缺乏與前沿科技的聯系,因此需要進行教學改革的探討和實踐。
隨著教育改革的不斷深入,傳統的實踐教學中“以教師為中心”、“以灌輸為主要方式”的教學模式已無法適應時代的要求。先進的教學模式是人才培養的關鍵措施。研究型教學模式,又稱為研討式教學模式,是指教師以課程內容和學生的知識積累為基礎,引導學生創造性地運用知識、自主地發現問題、研究問題和解決問題,以學生為中心,以知識掌握為基礎,以能力培養為主線,以提高素質為目的的一種新模式。集成電路設計實踐同樣需要采用先進的教學方式,提高學生的創新能力,培養研究型IC設計人才。
2 研究型實踐教學模式的作用分析
集成電路設計實踐引入研究型實踐教學模式,可以使相關領域的學生真正實現學有所用,不僅學習了集成電路設計的軟件知識,同時可以將課堂的理論知識通過工藝模型、電路設計、仿真方法來復現,從而更深入的理解理論知識,而且可以通過一些電路實例來解釋生活中的一些現象,激發學習的興趣。
集成電路設計是實踐性很強的一個方向,要求將工藝、器件、電路、版圖四個方面的理論課程融會貫通,而傳統的實踐教學旨在加強學生對軟件的認識,忽略對理論內容的加深與貫通。通過研究型實踐教學模式的開展,可以在保證教學大綱不變的前提下,通過選擇適用性較強的實踐內容,使學生一方面能夠將各門理論課的知識加深及貫通,另一方面可以使學生接觸到用人單位感興趣的課題內容,有利于學生加強實踐的動力和持續進步。通過研究型實踐,對學校而言,可以培養更優秀學生;對學生而言,可以掌握前沿知識、促進就業。
研究型實踐成果的實現為學生的晉升、發展提供支持。學生的實踐研究成果如能公開發表或獲獎,能解決實際工作中的問題,這無形中為學生在工作崗位上的晉升、發展增加籌碼。這在最大程度上激發學生的實踐興趣,是其他任何實踐模式都不可比擬的。同時,研究型實踐教學鼓勵學生多看文獻、多寫總結報告,這也為學生撰寫本科畢業論文打下良好的基礎。
3 研究型實踐教學模式的具體實施
3.1 課程結構優化
指導學生接觸各類資料,能夠提出問題,進而解決問題以掌握知識、應用知識,完成對知識的一個探求過程;對實驗內容進行適當調整和完善,使課程體系更全面更科學,更能貼近行業發展,更能體現學生的主動性。
3.2 采用課堂討論進行專題研討的教學方法
在研究型實踐教學模式中,師生互動有助于學生對基本概念、基本理論、基本方法的理解和掌握。根據課程需要,結合國內外的研究現狀和發展趨勢,采用與行業內吻合的實驗軟件,挑選合適的電路原型做仿真設計,并共同探討電路的優化方案。
3.3 專業資料查詢能力培養
為學生提供研究資料或指導學生進行資料查詢、整理,鼓勵學生從圖書館、書店、網絡等各種途徑查閱文獻資料,以充實自己的研究基礎。提醒學生要對已收集的資料進行批判性的研究,去偽存真,指導學生從這些資料中總結、分析、解釋與實踐研究課題相關的理論、知識經驗以及前人的研究成果。
3.4 指導學生撰寫專題論文(報告)
在研究型實踐教學過程中,指導學生通過論文、調查報告、工作研究、分析報告、可行性論證報告等形式記錄實踐研究成果。在撰寫論文時,要求學生要了解實踐課題研究報告的一般撰寫格式;要先擬訂論文的寫作提綱,組織好論文的結構,做到綱舉目張;會用簡練、嚴謹、準確的語言表達自己的思想,不追求文章的長短。指導學生開展專題電路討論,由學生根據自己感興趣的課題來查找文獻資料,進行研究,完成電路設計和仿真,最后完成專題論文的撰寫。
3.5 鼓勵學生參與課題研究
為調動學生參與科研創新活動的積極性,激發學生的創新思維,提高學生實踐創新能力,鼓勵學生參加老師的課題,鍛煉學生的動手能力,培養“研究型”的思維模式。
4 研究型實踐教學模式對教師和學生的要求
4.1 研究型實踐教學模式對教師的要求
研究型實踐教學模式的實施對任課教師提出了新的要求:一是要熟練地掌握課程的基礎知識和內在結構,還要掌握與課程相關的專業基礎知識和實踐的基本技能;二是要掌握學科最新信息,不斷更新知識,了解課程所涉及學科的最新動態和取得的最新研究成果;三是要熟練運用科學研究的方法和手段。這些都對教師提出了更高的要求。
4.2 研究型實踐教學模式對學生的要求
研究型實踐教學模式對學生的要求:一是學生要有一定的知識積累,儲備了比較完備的基礎知識;二是要求學生具有一定的專業知識水平,熟練掌握集成電路的一些理論知識;三是要求學生具備一定的自我控制能力和自學能力;四是要求學生具備一定的科學研究能力。在研究型教學中,學生積極參與顯得尤為重要,需要充分調動學生的積極性和主動性。
參考文獻
[1]黃雪梅.研究型實踐教學有效實現的三個關鍵環節[J].理工高教研究, 2009,4,28(2):136-137.
篇6
關鍵詞:電子科學與技術;集成電路設計;平臺建設;IC產業
中圖分類號:G642 文獻標志碼:A 文章編號:1674-9324(2014)08-0270-03
國家教育部于2007年正式啟動了高等學校本科教學質量與教學改革工程(簡稱“質量工程”),其建設的重要內容之一就是使高校培養的理工科學生具有較強的實踐動手能力,更好地適應社會和市場的需求[1]。為此,我校作為全國獨立學院理事單位于2007年6月通過了ISO2000:9001質量管理體系認證[2],同時確立了“質量立校、人才強校、文化興校”三大核心戰略,深入推進內涵式發展,全面提高人才培養質量。對于質量工程采取了多方面多角度的措施:加強教學改革項目工程;鼓勵參加校內學生創新項目立項,(大學生創新基金項目);積極參加國家、省級等電子設計大賽;有針對性地對人才培養方案進行大幅度的調整,增大課程實驗學時,實驗學時占課程的比例從原來的15%提高到25%以上,并且對實驗項目作了改進,提高綜合性和設計性實驗的比重;同時增加專業實踐課程,強調學生的應用能力和創新能力;課程和畢業設計更注重選題來源,題目比以前具有更強的針對性,面向專業,面向本地就業市場。不僅如此,學院還建立了創業孵化中心、建立了實驗中心等。通過這些有效的措施,努力提高學生的綜合素質、創新和應用能力。除了學校對電子信息類專業整體進行統籌規劃和建設外,各個二級學院都以“質量工程”建設為出發點和立足點,從專業工程的角度出發,努力探索各個專業新的發展思路和方向。由于集成電路設計是高校電子科學與技術、微電子學等相關專業的主要方向,因此與之相關的課程和平臺建設成為該專業工程探索的重點。通過對當前國內外高校該專業方向培養方案分析,設置的課程主要強調模擬/數字電路方向,相應的課程體系為此服務,人才培養方案設置與之相對應的理論和實踐教學體系;同時建立相應的實習、實踐教學平臺。由此,依據電子科學與技術專業的特點,結合本專業學生的層次和專業面向,同時依據本地的人才需求深度和廣度,對以往的人才培養方案進行革新,建立面向中山IC產業的集成電路設計專業應用型的設計平臺。另外,從課程體系出發,強化IC設計的模擬集成電路后端版圖設計和驗證,使學生在實踐教學環節中得到實際的訓練。通過這些改革既可有效地幫助學生迅速融入IC設計業,也為進入IC制造行業提高層次到新高度。
一、軟件設計平臺在集成電路設計業的重要性
自從1998年高等學校擴大招生以來,高校規模發展很快,在校大學生的人數比十五年前增長了10倍。高校的基礎設施和設備的投入呈現不斷增長的趨勢,學校的辦學條件不斷改善,同時,各個高校對實驗室的建設也在持續增大,然而在實驗室建設的過程中,盡管投入的資金量在不斷增大,但出現的現象是重視專業儀器和設備的投入,忽視專業設計軟件的購置,這可能是由于長期以來形成的重有形實體、輕無形設計軟件,然而這種意識給專業發展必將帶來不利影響。對于IC專業來說,該專業主要面向集成電路的生產、測試和設計,其中集成電路設計業是最具活力、最有增長效率的一塊,即使是在國際金融危機的2009年,中國的IC設計業不僅沒有像半導體行業那樣同比下降10%,反而逆勢增長9.1%;在2010年,國際金融危機剛剛緩和,中國IC設計業的同比增速又快速攀升到45%;2011年全行業銷售額為624.37億元,2012年比2012年增長8.98%達到680.45億元,集成電路行業不僅增長速度快,發展前景好,而且可以滿足更多的高校學生就業和創業。為了滿足IC設計行業的要求,必須建設該行業需求的集成電路軟件設計平臺。眾所周知集成電路行業制造成本相對較高,這就要求設計人員在設計電路產品時盡量做到一次流片成功,而要實現這種目標需要建設電路設計驗證的平臺,即集成電路設計專業軟件設計平臺。通過軟件平臺可以實現:電路原理拓撲圖的構建及參數仿真和優化、針對具體集成電路工藝尺寸生產線的版圖設計和驗證、對版圖設計的實際性能進行仿真并與電路原理圖仿真對照、提供給制造廠商具體的GDSII版圖文件。軟件平臺實際上已經達到驗證的目的,因此,對于集成電路設計專業的學生或工作人員來說,軟件設計平臺的建設特別重要,如果沒有軟件設計平臺也就無法培養出真正的IC設計人才。因此,在培養具有專業特色的應用型人才的號召下,學院不斷加大實驗室建設[3],從電子科學與技術專業角度出發,建設IC軟件設計平臺,為本地區域發展和行業發展服務。
二、建設面向中山本地市場IC應用平臺
近年來,學校從自身建設的實際情況出發,減少因實驗經費緊張帶來的困境,積極推動學院集成電路設計專業方向的人才培養。教學單位根據集成電路設計的模塊特點確定合適的軟件設計平臺,原理拓撲圖的前端電路仿真采用PSPICE軟件工具,熟悉電路仿真優化過程;后端采用L-EDIT版圖軟件工具,應用實際生產廠家的雙極或CMOS工藝線來設計電路的版圖,并進行版圖驗證。這種處理方法雖然暫時性解決前端和后端電路及版圖仿真的問題,但與真正的系統設計集成電路相對出入較大,不利于形成IC的系統設計能力。2010年12月國家集成電路設計深圳產業化基地中山園區成立,該園區對集成電路設計人才的要求變得非常迫切,客觀上推進了學院對IC產業的人才培養力度,建立面向中山IC產業的專業應用型設計平臺變得刻不容緩[4],同時,新的人才培養方案也應聲出臺,促進了具有一定深度的教學改革。
1.軟件平臺建設。從目前集成電路設計軟件使用的廣泛性和系統性來看,建設面向市場的應用平臺,應該是學校所使用的與實際設計公司或其他單位的軟件一致,使得所培養的IC設計人才能與將來的就業工作實現無縫對接,從而提高市場對所培養的集成電路設計人才的認可度,同時也可大大提高學生對專業設計的能力和信心[5]。遵循這個原則,選擇Cadence軟件作為建設平臺設計軟件,這不僅因為該公司是全球最大的電子設計技術、程序方案服務和設計服務供應商,EDA軟件產品涵蓋了電子設計的整個流程,包括系統級設計,功能驗證,IC綜合及布局布線,模擬、混合信號及射頻IC設計,全定制集成電路設計,IC物理驗證,PCB設計和硬件仿真建模,而且通過大學計劃合作,可以大幅度的降低購置軟件所需資金,從而從根本上解決學校實驗室建設軟件費用昂貴的問題。另外,從中山乃至珠三角其他城市的IC行業中,各個單位都普遍采用該系統設計軟件,而且選用該軟件更有利于剛剛起步的中山集成電路設計,也更加有利于該產業的標準化和專業化,乃至進一步的發展和壯大。
2.針對中山IC產業設計。定位于面向本地產業的IC應用型人才,就必須以中山IC產業為培養特色人才的出發點。中山目前有一批集成電路代工生產和設計的公司,主要有中山市奧泰普微電子有限公司、芯成微電子公司、深電微電子科技有限公司、木林森股份有限公司等,能進行IC設計、工藝制造和測試封裝,主要生產功率半導體器件和IC、應用于家電等消費電子、節能照明等。日前奧泰普公司的0.35微米先進工藝生產線預計快速投產,該單位的發展對本地IC人才需求有極大的推動力,推動學生學習微電子專業的積極性,而這些也有力地支持本地IC企業的長遠發展。因此,建立面向本地集成電路產業的軟件設計平臺,有利于專業人才的培養、準確定位,并形成了本地優勢和特色。
3.教學實踐改革。為了提高人才培養質量,形成專業特色,必須對人才培養方案進行修改。在人才培養方案中通過增加實踐教學環節的比例,實驗項目中除了原有驗證性的實驗外、還增加了綜合性或設計性的實驗,這種變化將有助于學生從被動實驗學習到主動實驗的綜合和設計,提高學生對知識的靈活運用和動手能力,從而為培養應用型的人才打下良好的基礎。除此之外,與集成電路代工企業及芯片應用公司建立合作關系。學生在學習期間到這些單位進行在崗實習和培訓,可以將所學的專業理論知識應用于實際生產當中去,形成無縫對接;而從單位招聘人才角度上來說,可以節約人力資源培訓成本,招到單位真正需要的崗位人才。因此,合作雙方在找到相互需求的基礎上,形成有效的合作機制。①課程改革。針對獨立學院培養應用型人才的特點,除了培養方案上增加多元化教育課程之外,主要是強調實踐教學的改革,增加綜合實驗課程,如:《現代電子技術綜合設計》計32學時、《微電子學綜合實驗》計40學時、《EDA綜合實驗》為32學時、《集成電路設計實驗》為40學時,其相應的課程學時數從以驗證性實驗為主的16個學時,增加到現在32學時以上的帶有綜合性或設計性實驗的綜合實踐課程。這種變化不僅是實踐教學環節的課時加大,而且是實驗項目的改進,也是實踐綜合能力的增強,有利于學生形成專業應用能力。②與單位聯合的IC設計基地。IC設計基地主要立足于兩個方面:一是立足于本地IC企業或設計公司;二是立足于IC代工和集成電路設計應用。前者主要利用本地資源就近的優勢,學生參觀、實習都比較方便,同時也有利于學校與用人單位之間的良好溝通,提高雙方的認可度和贊同感。如:中山市奧泰普微電子有限公司、木林森股份有限公司等。后者從生產角度和設計應用出發,帶領學生到IC代工企業參觀,初步了解集成電路的生產過程,企業的架構、規劃和發展遠景。也可根據公司的人才需要,選派部分學生到公司在崗實習[6]。如:深圳方正微電子有限公司、廣州南科集成電子有限公司等。通過這些方式不僅可以增強學生對專業知識的應用能力,而且有利于學生對IC單位的深入了解,為本校專業應用型人才找到一種行之有效的就業之路。
三、集成電路設計平臺的實效性
從2002年創辦電子科學與技術專業以來,學校特別重視集成電路相關的實驗室建設。從初期的晶體管器件和集成塊性能測量,硅片的少子壽命、C-V特性、方阻等測量,發展到探針臺的芯片級的性能測試,在此期間為了滿足更多的學生實驗、興趣小組和畢業設計的要求,微電子實驗室的已經過三次擴張和升級,其建設規模和實驗水平得到了大幅度的提升。另外,為培養本科學生集成電路的設計能力,提高應用性能力,學校還建立了集成電路CAD實驗室,以電路原理圖仿真設計為重點,著重應用L-Edit版圖軟件工具,進行基本的集成電路版圖設計及驗證,對提升學生集成電路設計應用能力取得了一定的效果。目前,為了大力提高本科教學質量,提升辦學水平,重點對實踐課程和IC軟件設計平臺進行了改革。學校開設了專門實踐訓練課程,如:集成電路設計實驗。從以前的16學時課內驗證設計實驗提升為32學時獨立的集成電路設計實驗實踐課程,內容從以驗證為主的實驗轉變為以設計和綜合為主的實驗,整體應用設計水平進行了大幅度的提升,有利于培養學生的應用和動手能力。不僅如此,對集成電路的設計軟件也進行了升級,從最初的用Pspice和Hspice軟件進行電路圖仿真,L-Edit軟件工具的后端版圖設計,升級為應用系統的專業軟件平臺設計工具Cadence進行前后端的設計仿真驗證等,并采用開放實驗室模式,使得學生的系統設計能力得到一定程度的提升,提高了系統認識和項目設計能力。通過IC系統設計軟件平臺的建設和實踐教學課程改革,使得學生對電子科學與技術專業的性質和內容了解更加全面,對專業知識學習的深度和廣度也得到進一步提高,從而增強了專業學習的興趣,提高了自信心。此外,其他專業的學生也開始轉到本專業,從事集成電路設計學習,并對集成電路流片產生濃厚的興趣。除此之外,學生利用自己在外實踐實習的機會給學校引進研究性的開發項目,這些都為本專業的發展形成很好的良性循環。在IC設計平臺的影響下,本專業繼續報考碩士研究生的學生特別多,約占學生比例的45%左右。經過這幾年的努力,2003、2004、2005、2006級都有學生在碩士畢業后分別被保送或考上電子科技大學、華南理工大學、復旦大學、香港城市大學的博士。從這些學生的反饋意見了解到,他們對學校在IC設計平臺建設評價很高,對他們進一步深造起到了很好的幫助作用。不僅如此,已經畢業在本行業工作的學生也對IC設計平臺有很好的評價:通過該軟件設計平臺不僅熟悉了集成電路設計的工藝庫、集成電路工藝流程和相應的工藝參數,而且也熟悉版圖的設計,這對于從事IC代工工作起到很好的幫助作用。現在已經有多屆畢業的學生在深圳方正微電子公司、中山奧泰普微電子有限公司工作。另外,還有許多學生從事集成電路應用設計工作,主要分布于中山LED照明產業等。
通過IC軟件設計平臺建設,配合以實踐教學改革,使得學生所學理論知識和實際能力直接與市場實現無縫對接,培養了學生的創新意識和實踐動手能力,增強了學生的自信心。另外,利用與企業合作的生產實習,可以使得學生得到更好的工作鍛煉,為將來的工作打下良好的基礎。實踐證明,建設面向中山IC產業的集成電路設計實踐教學平臺,尋求高校與公司更緊密的新的合作模式,符合我校人才培養發展模式方向,對IC設計專業教學改革,培養滿足本地區乃至整個社會的高素質應用型人才,具有特別重要的作用。
參考文獻:
[1]許曉琳,易茂祥,王墨林.適應“質量工程”的IC設計實踐教學平臺建設[J].合肥工業大學學報(社會科學版),2011,25(4):[129-132.
[2]胡志武,金永興,陳偉平,等.上海海事大學質量管理體系運行的回顧與思考[J].航海教育研究,2009,(1):16-20.
[3]毛建波,易茂祥.微電子學專業實驗室建設的探索與實踐[J].實驗室研究與探索,2005,24(12):118-126.
[4]鞠晨鳴,徐建成.“未來工程師”能力的集中培養大平臺建設[J].實驗室研究與探索,2010,29(4):158-161.
[5]袁穎,董利民,張萬榮.微電子技術實驗教學平臺的構建[J].電氣電子教學學報,2009,(31):115-117.
[6]王瑛.中低技術產業集群中企業產學研合作行為研究[J].中國科技論壇,2011,(9):56-61.
篇7
摘要:基于學習產出的教育(OBE)模式是近年來國際工程教育改革的最新成果。近年來由我國教育部發起的卓越工程師教育培養計劃、工程教育專業認證和新一輪的高等院校審核評估,都是基于OBE的工程教育模式。本文以《模擬集成電路設計》課程為例,提出并詳細討論了一種基于OBE培養模式的課程評價方法。在確定課程對專業培養標準的支撐矩陣后,給出了課程目標達成度的具體計算方法和對應的詳細的教學設計。
關鍵詞:基于學習產出的教育(OBE);工程專業認證;課程目標達成度;培養標準
中圖分類號:G642.3 文獻標志碼:A 文章編號:1674-9324(2017)21-0108-02
近年來,我國高等院校的工程教育蓬勃發展。國家教育部2006年牽頭正式啟動全國工程教育專業認證試點工作,2010年,決定在高校中展開實施“卓越工程師教育培養計劃”(以下簡稱“卓工計劃”)試點工作,并把通過國家工程教育認證作為卓工計劃試點項目結題的必要條件。2013年,我國正式被《華盛頓協議》認可為預備會員,2016年,成為正式會員。
事實上,工程認證的內涵是“基于學習產出的教育”(OBE,Outcomes-Based Education)。目前,包括成都信息工程大學(以下簡稱“我校”)在內的首批61所試點高校的卓工計劃試點已近收尾階段。因此,在OBE的實現主線,即定義預期學習產出―實現預期學習產出―評估學習產出中,“評估學習產出”是目前工作的重中之重。微電子科學與工程專業是我校卓工計劃試點專業,在該專業的培養方案中,《模擬集成電路設計》課程為核心必修課,在培養學生模擬集成電路設計理論知識和工程能力方面具有舉足輕重的作用。本文以《模擬集成電路設計》課程為例,著重探討如何實現課程達成度評價。本文研究對進一步深化包括卓工計劃在內的工科專業的工程教育改革具有重要意義。
一、課程對培養標準的支撐矩陣
在專業人才培養方案中,每個專業都具有自己的培養標準,一般包括技術基礎知識和人文素養、職業能力和態度、人際交往能力、團隊工作和交流能力、復雜工程能力等多個方面。這些培養標準完全是由培養方案中的課程體系所支撐,并由此形成課程對培養標準的支撐矩陣。我校微電子科學與工程專業的《模擬集成電路設計》課程所承擔的培養標準包括如“培養標準1:具有電路設計與分析、工藝分析、器件性能分析和版圖設計等的基本能力”在內的共計8條,涵蓋了從技術到溝通(團隊合作)、到復雜工程能力等多個方面。為了便于評價每一條培養標準的達成情況,需要在課程內部所涉及的知識點、評價方式等對培養標準的支撐進行進一步分解。表1列出了《模擬集成電路設計》這門課所支撐的培養標準1對應的部分課程內容和考核方式。
由表1可見,評價培養標準1的達成方法采用了成績分析法(考試、作業)和評分表分析法(討論、演講、課程設計等)相結合的方式。這是因為,我們認為,學生的電路設計與分析的基本能力不僅可以通過量化評分的方式進行考核,同時,在課程設計、討論、演講等具有一定主觀性的考核方式中也能夠較好體現。
二、課程目標達成度的評價方法
為了計算某條培養標準在該門課程的達成度,首先需要對該培養標準的達成度的計算方法進行定義。在《模擬集成電路設計》課程中,我們采用如下定義方法:
培養標準i的評價值= (1)
其中,樣本班級為了保證具有統計意義,應該抽取好中差比例較為均衡的學生樣本。為了保證樣本抽取的客觀性,我們抽取一個自然班。
依然以課程所支撐的培養標準1為例,2015-2016(2)學期能夠支撐該標準的分值以及權重如表2所示:
分別對4個考核環節的該班級的所有學生計算平均分,并代入公式(1)計算,可獲得培養標準1的評價值。
值得注意的是,表2中所列的各個考核環節的分值并不一定是該課程中該考核環節的總分,而應該是能夠支撐該培養標準的該考核環節的分值。同時,各個考核環節的分值和權重應該總體穩定且動態優化的過程。為了保證達成度評價盡可能客觀和合理,相鄰兩個學年的考核環節權重不應有過于劇烈的變化。
三、教學設計
為了更方便對課程所支撐的培養標準評價值進行計算,在行課前,需要精心設計教學大綱和教學活動。
1.根據所建立的培養標準與課程考核環節的支撐矩陣,合理進行教學活動。支撐矩陣應該包括課程所支撐的所有培養標準,以及每個培養標準所對應的考核方法及考核內容。在支撐關系中,難免會出現一個考核環節同時支撐多個培養標準的情況。例如,“(3)討論”環節能夠同時支撐培養標準1、3、4,其中1為相關的知識要求,3為團隊合作要求,4為溝通能力要求。在具體實施過程中,需要考慮是選擇利用該評價環節總的評價值同時對3個培養標準進行評價,還是進一步對該考核環節進一步分解。在我校《模擬集成電路設計》課程中,我們將“(2)討論”環節分解為準備、匯報討論2個步驟。其中“時浮敝稈生為了討論所做的筆記,反映學生的知識能力。而“匯報討論”指學生的臨場發言,反映學生的團隊合作和溝通能力。
2.確定每一個知識點對所對應培養標準的支撐權重,并由此指導教學過程中各知識點的學時分配。這樣,在教學過程中更具有針對性,更能夠把握重點。以表1中“單級放大器”課程內容為例,表3給出了一種詳細的支撐權重、學時分配和教學設計。
3.合理設計每個知識點的考核方式。面向課程達成度的教學評價本身就是工程專業認證的重要一環,宗旨是通過科學、合理的課程達成度評價方式反映學生畢業要求能否達成,進一步反饋教學中的問題,指導教學內容、教學方法的持續改進,最終達到實現提高學生工程能力的最終目的。因此,課程中富有可實踐性的知識點應以討論、演講、作業、課程設計等考核方式為牽引,采用綜合運用探究式、啟發式和互動式的教學方法等進行授課。
四、結束語
在工程教育背景下,以OBE培養模式作為目標導向,能夠有效提高工程教育質量。培養體系中課程達成度的評價結果,作為質量反饋環節的重要數據,對教學設計、教學管理和持續改進都具有重要的指導意義。本文提出的課程達成度評價設計具有一定的普適性,對工科專業的課程達成度計算都具有重要參考意義。
參考文獻:
[1]孫娜.中國高等工程教育專業認證發展現狀分析及其展望[J].創新與創業教育,2016,17(1):29-34.
[2]林健.“卓越工程師教育培養計劃”通用標準研制[J].高等工程教育研究,2010,(4):21-29.
篇8
關鍵詞:微電子學;實驗室建設;教學改革;
1微電子技術的發展背景
美國工程技術界在評出20世紀世界最偉大的20項工程技術成就中第5項——電子技術時指出:“從真空管到半導體,集成電路已成為當代各行各業智能工作的基石”。微電子技術發展已進入系統集成(SOC—SystemOnChip)的時代。集成電路作為最能體現知識經濟特征的典型產品之一,已可將各種物理的、化學的和生物的敏感器(執行信息獲取功能)和執行器與信息處理系統集成在一起,從而完成從信息獲取、處理、存儲、傳輸到執行的系統功能。這是一個更廣義的系統集成芯片,可以認為這是微電子技術又一次革命性變革。因而勢必大大地提高人們處理信息和應用信息的能力,大大地提高社會信息化的程度。集成電路產業的產值以年增長率≥15%的速度增長,集成度以年增長率46%的速率持續發展,世界上還沒有一個產業能以這樣的速度持續地發展。2001年以集成電路為基礎的電子信息產業已成為世界第一大產業。微電子技術、集成電路無處不在地改變著社會的生產方式和人們的生活方式。我國信息產業部門準備充分利用經濟高速發展和巨大市場的優勢,精心規劃,重點扶持,力爭通過10年或略長一段時間的努力,使我國成為世界上的微電子強國。為此,未來十年是我國微電子技術發展的關鍵時期。在2010年我國微電子行業要實現下列四個目標:
(1)微電子產業要成為國民經濟發展新的重要增長點和實現關鍵技術的跨越。形成2950億元的產值,占GDP的1.6%、世界市場的4%,國內市場的自給率達到30%,并且能夠拉動2萬多億元電子工業產值。從而形成了500~600億元的純利收入。
(2)國防和國家安全急需的關鍵集成電路芯片能自行設計和制造。
(3)建立起能夠良性循環的集成電路產業發展、科學研究和人才培養體系。
(4)微電子科學研究和產業的標志性成果達到當時的國際先進水平。
在這一背景下,隨著國內外資本在微電子產業的大量投入和社會對微電子產品需求的急驟增加,社會急切地需要大量的微電子專門人才,僅上海市在21世紀的第一個十年,就需要微電子專門人才25萬人左右,而目前尚不足2萬人。也正是在這一背景下,1999年以來,全國高校中新開辦的微電子學專業就有數十個。2002年8月教育部全國電子科學與技術專業教學指導委員會在貴陽工作會議上公布的統計數據表明,相當多的高校電子科學與技術專業都下設了微電子學方向。微電子技術人才的培養已成為各高校電子信息人才培養的重點。
2微電子學專業實驗室建設的緊迫性
我國高校微電子學專業大部分由半導體器件或半導體器件物理專業轉來,這些專業的設立可追溯到20世紀50年代后期。辦學歷史雖長,但由于多年來財力投入嚴重不足,而微電子技術發展迅速,國內大陸地區除極個別學校外,其實驗教學條件很難滿足要求。高校微電子專業實驗室普遍落后的狀況,已成為制約培養合格微電子專業人才的瓶頸。
四川大學微電子學專業的發展同國內其它院校一樣走過了一條曲折的道路。1958年設立半導體物理方向(專門組),在其后的40年中,專業名稱幾經變遷,于1998年調整為微電子學。由于社會需求強勁,1999年微電子學專業擴大招生數達90多人,是以往招生人數的2倍。當時,我校微電子學專業的辦學條件與微電子學學科發展的要求形成了強烈反差:實驗室設施陳舊、容量小,教學大綱中必需的集成電路設計課程和相應實驗幾乎是空白;按照新的教學計劃,實施新課程和實驗的時間緊迫,基本設施嚴重不足;教師結構不合理,專業課程師資缺乏。
在關系到微電子學專業能否繼續生存的關鍵時期,學校組織專家經過反復調研、論證,及時在全校啟動了“523實驗室建設工程”。該工程計劃在3~5年時間內,籌集2~3億資金,集中力量創建5個適應多學科培養創新人才的綜合實驗基地;重點建設20個左右基礎(含專業及技術基礎)實驗中心(室);調整組合、合理配置、重點改造建設30個左右具有特色的專業實驗室。“523實驗室建設工程”的啟動,是四川大學面向21世紀實驗教學改革和實驗室建設方面的一個重要跨越。學校將微電子學專業實驗室的建設列入了“523實驗室建設工程”首批重點支持項目,2000年12月開始分期撥款275萬元,開始了微電子學專業實驗室的建設。怎樣將有限的資金用好,建設一個既符合微電子學專業發展方向,又滿足本科專業培養目標要求的微電子學專業實驗室成為我們學科建設的重點。
3實驗室建設項目的實施
3.1整體規劃和目標的確立
微電子技術的發展要求我們的實驗室建設規劃、實驗教改方案、人才培養目標必須與其行業發展規劃一致,既要腳踏實地,實事求是,又必須要有前瞻性。尤其要注意國際化人才的培養。微電子的人才培養若不能實現國際化,就不能說我們的人才培養是成功的。
基于這樣的考慮,在調查研究的基礎上,我們將實驗室建設整體規劃和目標確定為:建立國內一流的由微電子器件平面工藝與器件參數測試綜合實驗及超大規模集成電路芯片設計綜合實驗兩個實驗系列構成的微電子學專業實驗體系,既滿足微電子學專業教學大綱要求,又適應當今國際微電子技術及其教學發展需求的多功能的、開放性的微電子教學實驗基地。我們的目標是:
(1)建立有特色的教學體系——微電子工藝與設計并舉,強化理論基礎、強化綜合素質、強化能力培養。
(2)保證寬口徑的同時,培養專業技能。
(3)建立開放型實驗室,適應跨學科人才的培養。
(4)在全國微電子學專業的教學中具有一定的先進性。
實踐中我們認識到,要實現以上目標、完成實驗室建設,必須以教學體系改革、教材建設為主線開展工作。
3.2重組實驗教學課程體系,培養學生的創新能力和現代工業意識
實驗課程體系建設的總體思路是培養創造性人才。實驗的設置要讓學生成為實驗的主角和與專業基礎理論學習相聯系的主動者,能激發學生的創造性,有專業知識縱向和橫向自主擴展和創新的余地。因此該實驗體系將是開放式的、有層次的和與基礎課及專業基礎課密切配合的。實驗教學的主要內容包括必修、選修和自擬項目。我們反復認真研究了教育部制定的本科微電子學專業培養大綱及國際上對微電子學教學提出的最新基本要求。根據專業的特點,充分考慮目前國內大力發展集成電路生產線(新建線十條左右)和已成立近百家集成電路設計公司對人才的強烈需求,為新的微電子專業教學制定出由以下兩個實驗系列構成的微電子學專業實驗體系。
(1)微電子器件平面工藝與器件參數測試綜合實驗。
這是微電子學教學的重要基礎內容,也是我校微電子學教學中具有特色的實驗課程。這一實驗系列將使學生了解和初步掌握微電子器件的主要基本工藝,工藝參數的控制方法和工藝質量控制的主要檢測及分析方法,深刻地了解成品率在微電子產品生產中的重要性。同時,半導體材料特性參數的測試分析系列實驗是配合“半導體物理”和“半導體材料”課程而設置的基本實驗,通過整合,實時地與器件工藝實驗配合,雖增加了實驗教學難度,卻使學生身臨其境直觀地掌握了工藝對參數的影響、參數反饋對工藝的調整控制、了解半導體重要參數的測試方法并加深對其相關物理內涵的深刻理解。這樣的綜合實驗,對于學生深刻樹立產品成品率,可靠性和生產成本這一現代工業的重要意識是必不可少的。
(2)超大規模集成電路芯片設計綜合實驗。
這是微電子學教學的重點基礎之一。教學目的是掌握超大規模集成電路系統設計的基本原理和規則,初步掌握先進的超大規模集成電路設計工具。該系列的必修基礎實驗共80學時,與之配套的講授課程為“超大規模集成電路設計基礎”。除此而外,超大規模集成電路測試分析和系統開發實驗不僅是與“超大規模集成電路原理”和“電路系統”課程套配,使學生更深刻的理解和掌握集成電路的特性;同時也是與前一系列實驗配合使學生具備自擬項目和獨立創新的理論及實驗基礎。
3.3優化設施配置,爭取項目最佳成效
由于項目實施的時間緊迫、資金有限。我們非常謹慎地對待每一項實施步驟。力圖實現設施的優化配置,使項目產生最佳效益。最終較好地完成了集成電路設計實驗體系和器件平面工藝實驗體系的實施。具體內容包括:
(1)集成電路設計實驗體系。集成電路設計實驗室機房的建立——購買CADENCE系統軟件(IC設計軟件)、ZENILE集成電路設計軟件;集成電路設計實驗課程體系由EDA課程及實驗、FPGA課程及實驗、PSPICE電路模擬及實驗、VHDL課程及實驗、ASIC課程及實驗、IC設計課程及實驗等組成。
(2)器件平面工藝實驗體系和相關參數測試分析實驗。結合原有設備新購并完善平面工藝實驗系統,包括:硼擴、磷擴、氧化、清洗、光刻、金屬化等;與平面工藝同步的平面工藝參數測試,包括:方塊電阻、C-V測試(高頻和準靜態)、I-V測試、Hall測試、膜厚測試(ELLIPSOMETRY)及其它器件參數測試(實時監控了解器件參數,反饋控制工藝參數);器件、半導體材料物理測試設備,如載流子濃度、電阻率、少子壽命等。
(3)與實驗室硬件建設配套的軟件建設和環境建設。實驗室環境建設、實驗室崗位設置、實驗課程的系統開設、向相關學院及專業提出已建實驗室開放計劃、制定各項管理制度。
在實驗室的階段建設中,我們分步實施、邊建邊用、急用優先,在建設期內就使實驗室發揮出了良好的使用效益。
3.4強化管理,實行教師負責制
新的實驗室必須要有全新的管理模式。新建實驗室和實驗課程的管理將根據專業教研室的特點,采取教研室主任和實驗室主任統一協調下的教師責任制。在兩大實驗板塊的基礎上,根據實驗內容的布局進一步分為4類(工藝及測試,物理測試,設計和集成電路參數測試,系統開發)進行管理。原則上,實驗設施的管理及實驗科目的開放由相應專業理論課的教師負責,在項目的建立階段,將按前述的分工實施責任制,其責任的內容包括:組織設備的安裝調試,設備使用規范細則的制定,實驗指導書的編寫等。根據專業建設的規劃,在微電子實驗室建設告一段落后,主管責任教師將逐步由較年青的教師接任。主管責任教師的責任包括:設備的維護和保養,使用規范和記錄執行情況的監督,組織對必修和選修科目實驗指導書的更新,組織實驗室開放及輔導教師的安排,完善實驗室開放的實施細則等。
實驗課將是開放式的。結合基礎實驗室的開放經驗和微電子專業實驗的特點,要求學生在完成實驗計劃和熟悉了設備使用規范細則的條件下,對其全面開放。對非微電子專業學生的開放,采取提前申請,統一完成必要的基礎培訓后再安排實驗的方式。同時將針對一些專業的特點編寫與之相適應的實驗教材。
4取得初步成果
微電子學專業實驗室通過近3年來的建設運行,實現或超過了預期建設目標,成效顯著,于2002年成功申報為";四川省重點建設實驗室";。現將取得的初步成果介紹如下:
(1)在微電子實驗室建設的促進下,為適應新條件下的實驗教學,我們調整了教材的選用范圍。微電子學專業主干課教材立足選用國外、國內的優秀教材,特別是國外能反映微電子學發展現狀及方向的先進教材,我們已組織教師編撰了能反映國際上集成電路發展現狀的《集成電路原理》,選用了最新出版教材《大規模集成電路設計》,并編撰、重寫及使用了《集成電路設計基礎實驗》、《超大規模集成電路設計實驗》、《平面工藝實驗》、《微電子器件原理》、《微電子器件工藝原理》等教材。
在重編實驗教材時,改掉了";使用說明";式的教材編寫模式。力圖使實驗教材能配合實驗教學培養目標,啟發學生的想象力和創造力,尤其是誘發學生的原發性創新能力乃至創新沖動。
(2)對本科微電子學的教學計劃、教學大綱和教材進行了深入研究和大幅度調整,并充分考慮了實驗課與理論課的有機結合。堅持并發展了我校微電子專業在器件工藝實驗上的特色和優勢,通過對實驗課及其內容進行整合更新,使實驗更具綜合性。如將過去的單一平面工藝實驗與測試分析技術有機的結合,將原來相互脫節的芯片工藝、參數測試、物理測試等有機地整合在一起,以便充分模擬真實芯片工藝流程。使學生在獨立制造出半導體器件的同時,能對工藝控制進行實時綜合分析。
(3)引入了國際上最通用、最先進的超大規模集成電路系統設計教學軟件(如CADENCE等),使學生迅速地掌握超大規模集成電路設計的先進基本技術,激發其創造性。為了保證這一教學目的的實現,我們對
專業的整體教學計劃做了與之配合的調整。在第5學期加強了電子線路系統設計(如EDA、PSPICE等)的課程和實驗內容。在教學的第4學年又預留了足夠的學時,作為學生進一步掌握這一工具的選修題目的綜合訓練。
(4)所有的實驗根據專業基礎課的進度分段對各年級學生隨時開放。學生根據已掌握的專業理論知識和實驗指導書選擇實驗項目,提出實驗路線。鼓勵學生對可提供的實驗設施作自擬的整合,促進學生對實驗課程的全身心的投入。
在實驗成績的評定上,不簡單地看實驗結果的正確與否,同時注重實驗方案的合理性和創造性,注重是否能對實驗現象有較敏銳的觀察、分析和處理能力。
(5)通過送出去的辦法,把教師和實驗人員送到器件公司、設計公司培訓,并積極開展了校內、校際間的進修培訓。推促教師在專業基礎和實驗兩方面交叉教學,提高了教師隊伍的綜合素質。
(6)將集成電路設計實驗室建設成為電子信息類本科生的生產實習基地,為此,我們參加了中芯國際等公司的多項目晶圓計劃。
加入了國內外EDA公司的大學計劃,以利于實驗室建設發展和提高教學質量,如華大公司支持微電子實驗室建設,贈送人民幣1100萬元軟件(RFIC,SOC等微電子前沿技術)已進入實驗教學。
5結語
篇9
【關鍵詞】電子信息科學與技術微電子課程體系建設教學改革
【基金項目】大連海事大學教改項目:電子信息科學與技術專業工程人才培養實踐教學改革(項目編號:2016Z03);大連海事大學教改項目:面向2017級培養方案的《微電子技術基礎》課程教學體系研究與設計(項目編號:2016Y21)。
【中圖分類號】G42 【文獻標識碼】A【文章編號】2095-3089(2018)01-0228-02
1.開設《微電子技術基礎》的意義
目前,高速發展的集成電路技術產業使集成電路設計人才成為最搶手的人才,掌握微電子技術是IC設計人才的重要基本技能之一。本文希望通過對《微電子技術基礎》課程教學體系的研究與設計,能夠提高學生對集成電路制作工藝的認識,提高從事微電子行業的興趣,拓寬知識面和就業渠道,從而培養更多的微電子發展的綜合人才,促進我國微電子產業的規模和科學技術水平的提高。
2.目前學科存在的問題
目前電子信息科學與技術專業的集成電路方向開設的課程已有低頻電子線路、數字邏輯與系統設計、單片機原理、集成電路設計原理等。雖然課程開設種類較多,但課程體系不夠完善。由于現在學科重心在電路設計上,缺少對于器件的微觀結構、材料特性講解[1],導致學生在后續課程學習中不能夠完全理解。比如MOS管,雖然學生們學過其基本特性,但在實踐中發現他們對N溝道和P溝道的工作原理知之甚少。
近來學校正在進行本科學生培養的綜合改革,在制定集成電路方向課程體系時,課題組成員對部分學校的相關專業展開調研。我們發現大部分擁有電子信息類專業的高校都開設了微電子課程。譬如華中科技大學設置了固體電子學基礎、微電子器件與IC設計、微電子工藝學以及電子材料物理等課程。[2]又如電子科技大學設置了固體物理、微電子技術學科前沿、半導體光電器件以及高級微電子技術等課程。[3]因此學科課題組決定在面向2017級電子信息科學與技術專業課程培養方案中,集成電路設計方向在原有的《集成電路設計原理》、《集成電路設計應用》基礎上,新增設《微電子技術基礎》課程。本課程希望學生通過掌握微電子技術的原理、工藝和設計方法,為后續深入學習集成電路設計和工程開發打下基礎。
3.微電子課程設置
出于對整體課程體系的考慮,微電子課程總學時為32學時。課程呈現了微電子技術的基本概論、半導體器件的物理基礎、集成電路的制造工藝及封裝測試等內容。[4]如表1所示,為課程的教學大綱。
微電子技術的基本概論是本課程的入門。通過第一章節的學習,學生對本課程有初步的認識。
構成集成電路的核心是半導體器件,理解半導體器件的基本原理是理解集成電路特性的重要基礎。為此,第二章重點介紹當代集成電路中的主要半導體器件,包括PN結、雙極型晶體管、結型場效應晶體管(JFET)等器件的工作原理與特性。要求學生掌握基本的微電子器件設計創新方法,具備分析微電子器件性能和利用半導體物理學等基本原理解決問題的能力。
第三章介紹硅平面工藝的基本原理、工藝方法,同時簡要介紹微電子技術不斷發展對工藝技術提出的新要求。內容部分以集成電路發展的順序展開,向學生展示各種技術的優點和局限,以此來培養學生不斷學習和適應發展的能力。
第四章圍繞芯片單片制造工藝以外的技術展開,涵蓋著工藝集成技術、封裝與測試以及集成電路工藝設計流程,使學生對微電子工藝的全貌有所了解。
4.教學模式
目前大部分高校的微電子課程仍沿用傳統落后的教學模式,即以教師灌輸理論知識,學生被動學習為主。這種模式在一定程度上限制了學生主動思考和自覺實踐的能力,降低學習興趣,與本課程授課的初衷相違背。[5]為避免上述問題,本文從以下幾個方面闡述了《微電子技術基礎》課程的教學模式。
教學內容:本課程理論知識點多數都難以理解且枯燥乏味,僅靠書本教學學生會十分吃力。因此,我們制作多媒體課件來輔助教學,將知識點采用動畫的形式來展現。例如可通過動畫了解PN結內電子的運動情況、PN結的摻雜工藝以及其制造技術。同時課件中補充了工藝集成與分裝測試這部分內容,加強課堂學習與實際生產、科研的聯系,便于學生掌握集成電路工藝設計流程。
教學形式:課內理論教學+課外拓展。
1)課內教學:理論講解仍需教師向學生講述基本原理,但是在理解運用方面采用啟發式教學,課堂上增加教師提問并提供學生上臺演示的機會,達到師生互動的目的。依托學校BBS平臺,初步建立課程的教學課件講義、課后習題及思考題和課外拓展資料的體系,以方便學生進行課后的鞏固與深度學習。此外,利用微信或QQ群,在線上定期進行答疑,并反饋課堂學習的效果,利于老師不斷調整教學方法和課程進度。還可充分利用微信公眾號,譬如在課前預習指南,幫助學生做好課堂準備工作。
2)課外拓展:本課程目標是培養具有電子信息科學與技術學科理論基礎,且有能力將理論付諸實踐的高素質人才。平時學生很難直接觀察到半導體器件、集成電路的模型及它們的封裝制造流程,因此課題組計劃在課余時間組織同學參觀實驗室或當地的相關企業,使教學過程更為直觀,加深學生對制造工藝的理解。此外,教師需要充分利用現有的資源(譬如與課程有關的科研項目),鼓勵學生參與和探究。
考核方式:一般來說,傳統的微電子課程考核強調教學結果的評價,而本課程組希望考核結果更具有前瞻性和全面性,故需要增加教學進度中的考核。課題組決定采用期末筆試考核與平時課堂表現相結合的方式,期末筆試成績由學生在期末考試中所得的卷面成績按照一定比例折合而成,平時成績考評方式有隨堂小測、課后習題、小組作業等。這幾種方式將考核過程融入教學,能有效地協助老師對學生的學習態度、學習狀況以及學習能力做出準確評定。
5.結語
篇10
關鍵詞:優化算法 集成電路 優化 設計
中圖分類號:G71 文獻標識碼:A 文章編號:1674-098X(2015)08(a)-0044-04
由于大量芯片制造技術變革,使得集成電路具有更加龐大的規模,在片上系統有更多復雜性的設計,要求芯片在進行設計時,不光有相應的集成電路知識,還要能夠進行更加快捷的電路設計。在進行相應的電路設計時,需要權衡各個性能指標,將其最優性能發揮出來,使用更多目標化的領域進行電路優化,還需要權衡各個目標,保證達到最優化的同時,不會消耗各自的性能,保證各個目標間不存在惡劣影響,并互相保證最優化功能[1]。
對于系統復雜性的設計,通過對設計過程的加速,來進行相應計算機的輔助綜合性分析,包括對電路進行模擬、射頻等辦法。數字電路能夠更加簡單的將不同邏輯層次進行抽離,提高電路的自動分布。模擬電路設計過程,因為種類繁多,結構差異巨大,設計需要大量的人力物力和技術指導。在一個小的芯片中,射頻電路雖然占用面積小,但是設計成本和設計時間卻要超出想象,其內產生的相應寄生效應,會導致電路的失真,無疑對電路優化增加阻礙。智能優化算法通過自然界的生物群體進行相關智能表現的一系列現象,并能夠設計出較為基礎的優化算法,并同生物一樣,能夠將集成電路進行更加優化的智能設計,極好的調整自我,來適應周圍環境變化。有效地將智能算法在各種大范圍的電路設計中進行應用,可以更好地增加電路設計效率,解決集成電路中存在的多沖突指標。還能夠發揮出自身潛在特點,提供設計者相應的數據庫進行電路方面的設計工作。
1 智能優化算法
人們利用自然界來認識更多的事物,并通過事物的來源進行想象和創造。智能優化算法也就是基于自然界,進行適應性啟發,從而模擬進化出來的利用計算機進行表達的方法。智能優化算法具體可以包括模擬退火、禁忌搜索、群智能優化等,能夠通過各種模擬自然界的相關程序,擴大搜索范圍,具有較強的全局搜索特點,可以得到更為優化的解決傳統問題的辦法,從任何研究角度,都能提供較為新穎的解決辦法。
1.1 禁忌搜索
禁忌搜索算法是通過對人類的大腦進行記憶啟發的算法,具有更加廣闊的搜索范圍,有全局搜索的功能[2]。利用十二表法來鎖住搜索區域,通過相應的禁忌準則來減少重復搜索的工作量,釋放禁忌中的優良個體,具有多樣性的搜索功能,減少系統陷入僵局,尋找到最適合的全局最優。
1.1.1 流程
禁忌搜索算法需要尋找到一個較為可行的點作為當前的初始解,再通過對其所在結構的函數鄰域解來進行相關鄰域的創建工作,隨后選出一定的鄰域解作為候選[3]。如果選出的候選是最優目標,測得結果比搜索出來的最優還好,就成為“超過預想狀態”,可以忽略其禁忌特點,用其作為當前解,填入禁忌中,修改每任禁忌對象;如果選出的候選不是最優目標,那么這一結果就不能夠出現在禁忌中,忽略禁忌中的最優解和當前解間的差異,將其填入禁忌中,改動每任緊急對象,反復搜索,直至找到“超過預想狀態”。具體的禁忌算法流程見圖1。
1.1.2 關鍵要素
完整的最優算法通常包括多種要素,當然禁忌算法也如此,這些要素都會影響緊急搜索是否能夠找到最優解。十二表法主要包括禁忌表、移動與鄰域、適配值函數、對象、長度、初始解、候選解、藐視、終止準則等[4]。
(1)初始解,也就是進行搜索時的最初狀態,初始解是通過隨機辦法生成的,遇到復雜約束時,隨機生成的初始解就不一定可行,因此具有很大的局限性。對于初始解的選取,在一個集成電路的設計中,占據較為重要的地位,選定合適的初始解,能夠有效降低工作量,增加搜索效率和搜索質量。
(2)移動與鄰域。一個生成新的最優解的過程就是所謂的移動。移動通常需要依據具體情況進行針對性的分析[5]。鄰域就是利用當前所解,通過一些列的移動產生的新的最優解,領域主要視具體情況而定,而鄰域結構能夠高質量的保證其搜索產生的最優解,從而增加算法的效率。
(3)候選解作為當前領域解中的最優解,其范圍大小通過搜索速度來確定。遇到較大規模的問題時,候選解的范圍則會變大,結合鄰域搜索的速度,通常只用當前解作為候選集。
(4)適配值函數類似于遺傳算法中的適應度函數,主要是為了評價單個個體的優劣情況。通常適配值函數都會改變目標函數來選擇,當遇到的目標函數具有較大的計算量時,需要簡單的改進適應算法,只要能夠將兩者保持在一定范圍內,就可以當做適配值函數。
(5)禁忌表作為設計禁忌對象時的特有結構,能夠有效防止搜索陷入重復的死循環僵局,也能夠保證算法不會拘泥在局部最優解之內[6]。而禁忌對象和長度作為緊急表中的兩個主要因素,前者影響表內的變化,通常改變這些元素能夠有效避免其搜索到的結果是局部最優解,可以使用狀態本身,后者是適配值,當做禁忌對象;而后者則表示了禁忌表的范圍。
(6)藐視準則,代表的是一種渴望與破禁的水平[7],當移動后的解要優于最優解時,就可以進行移動,不論該結果是否存在于禁忌表之中。滿足這個條件,就是藐視準則。通常情況下,這一準則就是為了預防遺失最優解而設立的。
(7)終止準則,當使用禁忌法進行搜索時,找不到最優解,也就是說搜索到的結果不能夠保證是全局最優解,也不能夠利用目前已知的數據進行判斷,所以需要使用終止準則進行停止搜索的工作。
1.1.3 特點和應用
同智能優化的其他算法比較,禁忌優化算法能夠更好的跳出思維的局限,利用全局進行搜索,并且該算法可以接受一定的差解,可以很好的進行局部搜索,又兼顧全局搜索[8]。而禁忌優化算法的缺點則是對于初始解和鄰域的依賴程度較大,不能夠很好的進行串行算法,降低了全局搜索的能力,多個關鍵性參數導致其并行算法的影響小,一旦出現不當的設置,很容易降低整體算法的計算能力。由于禁忌優化算法能夠更好的解決小規模問題的優化,所以對于最短時間內解決在設計超大規模的集成電路芯片問題時,具有較多的應用,在生產、組合、電路設計、神經網絡等領域應用較為廣泛,并有很多函數方面的全局最優解研究,通過不斷改進禁忌算法,能夠擁有更加廣泛的適用范圍。近年來,對于模擬退火算法同禁忌優化算法結合的方案也有一定程度的研究,利用二者配合使用的混合式搜索算法,能夠較好的解決相關問題,并進行算法的優化工作。
1.2 模擬退火算法
模擬退火算法是一種利用概率來接收新事物的Metropolis準則[9]。進行組合間最優解的尋找工作,主要的思想是根據固體物質在退火時,依據溫度的變化,選出的最高熵值(即內部無序狀態),熵值下降(即粒子逐漸出現一定的規律),通過這一過程進行溫度的平衡狀態,從而達到基本溫度狀態,也就是最低熵值(即固體內部最低內能),這一過程同尋求最優解的過程極為相似,概率論上利用退火過程進行模擬來解釋相關模型。
1.2.1 流程
模擬退火算法開始于一個較高溫度,隨著溫度的降低,呈現一種跳躍的征象,利用目標函數搜索全局,尋找全局最優解[10]。模擬退火算法可以說是一種能夠進行多問題解決的優化辦法,基本上能夠進行全局優化。
(1)Metropolis準則,假設一個系統的自由能等于系統內能與系統溫度的差值,用公式(1)代表,s是系統的熵。假設恒溫系統的兩個狀態是i和l,使用公式(2)和(3)表示。
F=E-Ts (1)
Fi=Ei-Tsi (2)
Fl=El-Tsl (3)
通過計算可以得出,F=Fl-Fi=Ei- El-(Tsi+Tsl)=E-Ts。當系統從狀態l變成狀態i時,F則會小于正常,說明能量明顯減少,熵值明顯增加,對自身變化較大。因此,溫度恒定,系統會把自身的非平衡狀態轉變為平衡狀態,由溫度決定兩因素的地位。假設微粒的原始狀態l是固體物質當前所處的狀態,使用能量狀態Ei來表示,隨后利用一個抗干擾裝置,隨機改變微粒位置,產生了一個新的能量狀態El,如果Ei
R=Exp[-(Ei- El)/kT] (4)
T代表絕對溫度,k是常數,R
Pl=1/z*exp(-El/kT) (5)
Pl代表系統處于微觀l的概率,而exp(-El/kT)是分布因子。當處于較高溫度時,系統能夠接收能量差距極大的新狀態,所以,當溫度處于一個較低的水平時,系統接收的新狀態要求僅有極小幅度的變化,所以對于不同溫度而言,具有相同的熱運動原理,但是溫度是零攝氏度時,任何的Ei>El均是不成立的。
(2)流程,假定初始溫度是T0,初始點是X0,計算初始點的函數值是f(X0),隨機產生的擾動為X,新點則變為公式(6)。計算該函數f(X1)和該函數同初始值之間存在的差異,即公式(7)。
X1=X+X (6)
f=f(X1)-f(X0) (7)
如果差異函數f低于正常,則下一次進行退火的模擬初始點可以使用新的點來代替;如果差異函數f高于正常,則需要計算新點接收的概率,即公式(8)。
P(f)=exp(-f/kT) (8)
在[0,1]區間內,偽隨機產生的數s,如果P(f)低于s,則下一次進行退火的模擬初始點可以使用新的點來代替,否則需要重復Metropolis準則,直到選出合適的數值為止。
1.2.2 關鍵要素
(1)狀態空間和鄰域函數。狀態空間也就是搜索空間,包括所有編碼后產生的可行解。在進行候選解的創建時,需要盡可能使用原始狀態函數進行創建,從而充滿整個空間[11]。
(2)狀態轉移概率,也就是接受概率,使用Metropolis準則,在進行可行解的轉化過程時,也受到T(溫度參數)的影響。
(3)冷卻進度表T,是從高溫T0到低溫冷卻時進行相應管理的一個進度表。如果使用T(t)來表示溫度,經典的模擬退火算法進行冷卻的方式使用公式(9)表示。快速冷卻法則可以用公式(10)表示。
T(t)=T0/lg(1+t) (9)
T(t)=T0/(1+t) (10)
以上兩種辦法都能夠降低模擬退火點至全局最小。冷卻進度表也說明該算法的效率,并且要想得到最佳組合,需要進行大量實驗才能夠得到。
(4)初始溫度,如果具有較高的初始溫度,那么會有較高的概率搜到高質量解,但需要更長的運算時間。對于初始溫度的給定時,需要結合算法優化所消耗的時間和效率,通常有兩種辦法,一是利用均勻辦法產生的一種狀態,將每一個目標函數都設定為初始溫度。另一個辦法是使用任意產生的狀態,利用最大目標函數進行確認,記錄其差值,即max,根據差值使用某一函數作為初始溫度。
(5)外循環終止準則,又叫做終止算法準則,常用準則包括設置溫度終止閾值,外循環的迭代,系統熵穩定程度的判定。
(6)內循環終止準則,也就是Metropol
is準則,利用不同溫度選出不同候選解,又被稱為是抽樣穩定性質準則,主要包含以下內容:目標函數均值是否穩定,連續若干個目標函數變化幅度,采樣辦法。
1.2.3 特點和應用
模擬退火算法通過概率的辦法尋求全局最優解,不受初始值的影響,能夠緩慢進行收斂,能夠較好的進行多數據的并行、擴展和通用,使用極高的效率進行有關最優化組合問題的解。不足之處是在一定程度上,雖然能夠降低程序陷入優化僵局的可能性,但在進行大范圍搜索時,需要多次進行計算,從而尋找到最優解,在實際的應用中,這一缺點極大地增加了工作量,不利于優化計算效率。
作為一種較為通用的使用隨機辦法進行搜索的計算方法,模擬退火算法已經廣泛的在機器學習、神經、生產、圖象等領域進行應用,對自動設計的模擬集成電路,應用模擬退火算法進行設計,多目標進行優化設計等。
1.3 遺傳算法
遺傳算法是基于達爾文生物進化論有關自然選擇同生物進化過程進行相關的計算所制作出來的模型,足以滿足適者生存與優勝劣汰的生物界遺傳機制。
1.3.1 流程
遺傳算法優化問題解叫做個體,通常使用變量序列來表示,叫做染色體或基因串。利用簡單的字符或數字表示染色體,通常使用0和1的二進制進行表示,或利用其他特殊問題進行表示,叫做編碼。
遺傳算法開始于種群,依據適者生存與優勝劣汰的生物界遺傳機制,不斷進行迭代進化,通過選擇、交叉和變異生成新種群,從而產生最優解。遺傳算法流程圖如圖2所示。
1.3.2 優點及應用
遺傳算法依據適者生存與優勝劣汰的生物界遺傳機制,主要優點包括以下幾點。第一,不需要使用函數,就能夠直接對結構對象進行有關求導的操作;第二,遺傳算法整體優化不受梯度和輔助的影響,只受目標和適應度的影響;第三,使用一定概率進行變遷,不需要固定在某一區域,很好的對搜索方向進行校正和適應,從而自動獲得結果;第四,遺傳算法具有較強的全局搜索力。以上這些優點很好地為相對較為復雜的問題進行有關系統求解時提供了相應的框架,因此被廣泛地應用在人們各個領域的生活中。
2 基于遺傳算法的二級運放電路優化
利用遺傳算法進行有關系統優化能夠使用更少的資源來設計自動化電路優化,既降低硬件的成本又縮短設計的使用時間。利用仿真軟件進行有關電路設計的優化,能夠使用更加精確的模型進行優化,但是其缺點在于巨大的求解空間導致耗費時間長。所以目前有一種提法是根據電路性能進行相關遺傳算法的解析,具有用時短、操作性能有所改善的優點。對于不是要求很嚴格的設計條件,可以使用二級運放進行電路設計,更加縮短設計時間。
2.1 二級運放的電路分析
進行有關集成電路的模擬中,使用運算放大器,能夠很好的將單元模塊進行高倍放大,通常情況下,使用反饋網絡進行有關電路模塊功能的重組。運算放大器作為一種較為重要的模擬和數模信號的系統電路模塊,已經被應用到各種系統的電路設計之中,運算放大器主要包括輸入差分、增益中間、緩沖輸出以及電路偏置和補償四種。基本結構如圖3所示。
2.2 二級運算放大器性能指標
下面通過二級運算放大器的交流小信號模型對運放的重要性能進行分析。第一級運放為M1-5的差分運放構成,第二級運放為M6-7的共源放大器構成。二級運放等效模型如圖4所示。
轉換速率,又叫做壓擺率,也就是說在運算放大器進行電壓輸出時候產生的轉換速率,很好的提示運放速度。在輸入端連接一個比較活躍的信號,通過運放輸出測得最大上升速率。
2.3 遺傳算法對電路進行優化設計
目前一種較為新穎的優化電路生成辦法是在小環境范圍進行有關二級運放的優化。具體編碼方式包括集合染色體內的各種未知參數,使用0和1的二進制代碼,代表不同的設計電路的方案。使用每個指標的性能函數相乘,得到適應度函數,從而顯示出最大化目標函數和最小化目標函數。
自適應免疫遺傳算法是目前較為新穎的智能優化改進算法,求解模擬相關生物學中的免疫系統,利用抗體的產生來排除抗原。自適應免疫遺傳算法使用一種較為高質量的節約資源進行有關機制的克隆,對于優化解即抗體進行高概率的選擇,同適應度函數有一個正比例關系。選定個體后將其復制傳代,放棄本身的親和力,也就是抗原抗體的匹配度,將優化的目標函數作為個體抗原。利用自適應免疫遺傳算法,提出相應電路圖的設計圖案,如圖5。
自適應免疫遺傳算法引入生物界內免疫系統相關概念與免疫系統方法,有效提升遺傳算法進行全局搜索方面的能力,并有效進行相關速度的收斂。改進后算法能夠有效的克服傳統算法中過早收斂的問題,以及盲目進行交叉和變異的操作,進行自適應免疫遺傳算法電路的優化,如圖6所示。
2.4 電路優化及仿真結果
運算放大器作為在進行電路的集成模擬過程中應用最為廣泛的電路,也具有較大的功耗和時間模塊,所以不同的方法設計顯示出不同的電路性能。比較具有代表性的二級運算放大器的電路圖如圖7所示。
從圖7可以看出,對于具有特定結構的功能電路,如果擁有較為合理的尺寸設計,可以得到一個較為固定的電路指標,某一性能改變會導致其他性能的變化。依據自身的電路設計經驗和實際電路的設計要求,來選擇合理的電路設計,雖然使用優化算法可以在設計電路時進行一定的優化,但是有關電路性能方面的解析,有關目標函數準確性模型的建立,具有一定的限制條件,需要進行更加深入的研究。
3 結語
智能優化算法在當今的很多領域內,都是重點的研究項目,該文主要針對智能優化算法的產生和發展進行闡述,并詳細分析了幾種較為典型的智能優化算法,其中,最具有代表性的集中算法是粒子群優化、遺傳算法等。雖然該文分析和研究的是集成電路進行智能設計的更為優化的方法,但是今后對于集成電路的智能設計,還有很多問題值得進行深入研究。
參考文獻
[1]郭文忠,陳國龍,陳振.離散粒子群優化算法研究綜述[J].福州大學學報(自然科學版),2011,39(5):631-638.
[2]胡小婷,田澤.基于DO-254的航空集成電路設計保障研究[J].計算機技術與發展,2012,22(8):189-191,195.
[3]張志偉.模數混合信號集成電路自動設計技術研究[J].陜西理工學院學報(自然科學版),2013,29(4):25-29.
[4]張孟娟.張江高科技園區集成電路設計企業發展之研究[J].經濟研究導刊,2013(12):26-28,79.
[5]冼志勇,徐潔.戰略性新興產業知識產權保護的協同合作機制研究―― 以集成電路設計公司為例[J].科學管理研究,2013,31(4):57-60.
[6]劉俐,趙杰.針對職業崗位需求探索集成電路設計技術課程教學新模式[J].中國職業技術教育,2012(2):5-8.
[7]王高峰,趙文生.三維集成電路中的關鍵技術問題綜述[J].杭州電子科技大學學報,2014,34(2):1-7.
[8]武玉華,路而紅,梁巨輝,等.數字密碼鎖專用集成電路的設計[J].計算機測量與控制,2010,18(12):2842-2845.
[9]岳亞杰,楊慧晶,張宏國.集成電路設計與集成系統專業人才培養模式的探究[J].黑龍江教育(高教研究與評估),2013(3):62-63.
- 上一篇:中學生家庭教育案例
- 下一篇:公司管理制度實施細則