塑料光纖研究論文
時(shí)間:2022-12-30 09:23:00
導(dǎo)語(yǔ):塑料光纖研究論文一文來(lái)源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。
1.光的基礎(chǔ)知識(shí)
光是通過(guò)光源內(nèi)大量的分子或原子振動(dòng)而產(chǎn)生的輻射。1894年,麥克斯韋從理論上指出,光是一種電磁波,1905年愛(ài)因斯坦提出光是一粒一粒的粒子流,每個(gè)粒子可被稱為光子。也就是說(shuō)光既具有粒子性,又具有波動(dòng)性,光在傳播時(shí)表現(xiàn)為波動(dòng)性,而與物質(zhì)作用時(shí)又表現(xiàn)為粒子性。通常我們所說(shuō)的光是電磁波的一種,它通常由紫外光、可見(jiàn)光和近紅外光組成,其中1-390nm波段的光為紫外光UV,波長(zhǎng)為280-300nm波段為UV-B,它的強(qiáng)光可以殺死或嚴(yán)重?fù)p傷地球上的生物;200-280um波段為UV-C,它的強(qiáng)光可以殺死地球上一切生物,包括人類,比紫外光頻率更高的還有X光和γ射線等;390-760nm波段的光為可見(jiàn)光;波長(zhǎng)在760-1500nm為近紅外光,中紅外波段波長(zhǎng)范圍為1.5-25μm,遠(yuǎn)紅外光譜波長(zhǎng)范圍25-300μm,比遠(yuǎn)紅外光頻率更小或波長(zhǎng)更長(zhǎng)的有毫米波、微波、短波、中波和長(zhǎng)波等。而可見(jiàn)光又是由七色光組成的,即可見(jiàn)光含有紅色光、橙色光、黃色光、綠色光、藍(lán)色光和靛青光等色光[2]:?
紫色/nm靛青/nm藍(lán)色/nm綠色/nm黃色/nm橙色/nm紅色/nm
390-430430-450450-500500-570570-600600-630630-760
國(guó)際照明委員會(huì)統(tǒng)一規(guī)定的標(biāo)準(zhǔn)是:選水銀光譜中波長(zhǎng)為700nm的紅光為紅基色光,波長(zhǎng)為546.1nm的綠光為綠基色光,波長(zhǎng)為435.8nm的藍(lán)光為藍(lán)基色光。常規(guī)POF一般在紫外光波段并沒(méi)有很好的透光性,而石英光纖和特制的液芯光纖在這一區(qū)域有很好的透光率,POF在可見(jiàn)光區(qū)域有很好的透光率,由POF芯材選用氟化和氘化聚合物材料制備的POF在近紅外光區(qū)域才有很好的透光率。
光在真空中的傳播速度C為3×108m/s,光的傳輸波長(zhǎng)λ,頻率f和光速C之間關(guān)系參見(jiàn)如下公式:
C=fλ……………………(1)
其中f的單位為赫茲Hz或1/秒(s),波長(zhǎng)的單位為米(m)。
只有真空的折射率n為1.0,故光在任一傳輸介質(zhì)的傳播速度V是光速除以該介質(zhì)的折射率,即:
光在真空中的傳播速度是最快的,傳輸介質(zhì)不同,其折射率不同,傳光速度也不同。相對(duì)而言,折射率大的傳輸介質(zhì)是光密介質(zhì),折射率小的傳輸介質(zhì)是光疏介質(zhì),對(duì)于POF而言,POF芯材為光密介質(zhì),POF皮材為光疏介質(zhì),由于光在光密媒介-芯材中的傳播速度會(huì)降低,故光在芯材中的傳輸速度慢于皮材中的傳輸速度;在空氣中,由于n≈1,光波的傳播速度接近于真空中的傳播速度C;純PMMA的折射率為1.49,故光在其中的傳輸速度約為2.01×108m/s。
光在均勻媒質(zhì)或不均勻媒質(zhì)中傳輸時(shí),滿足費(fèi)瑪(Fermat)原理,即光從空間一點(diǎn)到另一點(diǎn)是沿著時(shí)間為極值的路程而傳播的,即光沿著光程為最小或最大或恒量的路徑傳播。
2.幾何光學(xué)理論
要了解POF傳光原理,必須了解一些幾何光學(xué)的知識(shí)。
首先光學(xué)分為幾何光學(xué)和物理光學(xué),幾何光學(xué)是研究光在均勻介質(zhì)中的傳播特性,通常采用直線來(lái)描述,它是研究光在介質(zhì)中傳播的基礎(chǔ)光學(xué)理論。物理光學(xué)又分為波動(dòng)光學(xué)和量子光學(xué),波動(dòng)光學(xué)認(rèn)為光是一種電磁波,但它不能解釋光的微觀現(xiàn)象;量子理論認(rèn)為光的能量不是連續(xù)分布的,光是一粒粒運(yùn)動(dòng)著的光子組成,每個(gè)光子具有確定的能量。幾何光學(xué)理論的四大基本定律為:
2.1光的直線傳播定律:在各向同性的均勻介質(zhì)中,光是沿直線傳播的。
2.2光的獨(dú)立傳播定律:不同光源發(fā)出的光線從不同方向通過(guò)某點(diǎn)時(shí),彼此不影響,各光線的傳播不受其它光線影響。
2.3光的反射定律:當(dāng)一束光投射到某一介質(zhì)光滑表面時(shí),保存一部分光反射回原來(lái)的介質(zhì),這一光線稱為反射光線,反射光線、入射光線和法線位由于同一平面內(nèi),入射線同法線組成的角稱為入射角,反射光線同法線組成的角稱為反射角,反射角等于入射角,即θ1=θ3,其絕對(duì)值相等,這就是反射定律。
2.4光的折射定律:當(dāng)一束光投射到某一介質(zhì)光滑表面時(shí)除了有一部分光發(fā)生反射外,還有一部分光通過(guò)介質(zhì)分界面入射進(jìn)第二傳輸介質(zhì)中,這一部分光線稱為折射光線,折射光線和入射光線分別位于法線的兩側(cè),折射光線位于入射光線和法線所決定的平面內(nèi)。折射光線同法線組成的角稱為折射角,入射角的正弦值同折射角正弦值的比值為一恒定值,這就是折射定律。需要指出的是采用幾何光學(xué)分析光在某一研究對(duì)象中的傳輸特性時(shí),這一研究對(duì)象的幾何尺寸必須遠(yuǎn)遠(yuǎn)大于所傳輸?shù)墓獠ㄩL(zhǎng),這樣才能忽略波長(zhǎng)的長(zhǎng)度,否則就必須采用物理光學(xué)分析光在研究對(duì)象中的傳輸特性。也即是光纖纖芯直徑是所傳播光波長(zhǎng)的幾十倍或幾百倍時(shí),其傳播現(xiàn)象就可用幾何光學(xué)而不用波動(dòng)光學(xué)來(lái)研究。
3.子午光線在階躍型POF中的傳輸
?階躍型POF是一種具有芯皮結(jié)構(gòu)的光纖。
子午平面指的是包含有光纖軸的平面,所謂子午線,就是光線的傳播路徑始終在同一平面內(nèi),子午光線總是和光纖軸相交的,光在一種均勻介質(zhì)傳播時(shí)是一種直線式傳播:當(dāng)光從一種介質(zhì)傳至另一介質(zhì)表面時(shí),一般同時(shí)發(fā)生反射和折射;如果光從折射率小的光疏介質(zhì)射入折射率大的光密介質(zhì)時(shí),則折射角小于入射角;而當(dāng)光從光密介質(zhì)射入光疏介質(zhì)時(shí)折射角將大于入射角,因而當(dāng)光從光密介質(zhì)射入光疏介質(zhì)時(shí)就有可能出現(xiàn)只有反射而無(wú)折射的現(xiàn)象,這就是全反射,全反射是光折射的一種邊界效應(yīng),即光從一種透明介質(zhì)進(jìn)入到另一種介質(zhì)里而發(fā)生彎曲的現(xiàn)象。POF就是通過(guò)全反射原理進(jìn)行光傳輸?shù)摹?/p>
?由折射定律公式可得出:
n1sinθ1=n2sinθ2(4)
這里n1、n2分為芯皮折射率,θ1、θ2分為入射角和折射角,設(shè)發(fā)生全反射的臨界角為θm,此時(shí)θ2=90°,故而
當(dāng)入射角θ1>θm時(shí),則光在芯皮界面上發(fā)生全反射,而當(dāng)入射角θ1<θm時(shí),則光在芯皮表面上出現(xiàn)折射,有一部分光從芯材泄漏至皮層外。由全反射臨界角同樣可推出光纖截面臨界入射光纖角θ0,在空氣和光纖截面界面上,同樣有:
n0sinθ0=n1sin(90°—θm)
=n1cosθm
其中,n0為空氣折射率,設(shè)定其值同于真空折射率值1.0即n0=1.0,因而
?即外界光入射角θ小于θ0時(shí),光線才能在光纖中以全反射的形式向前傳播,從光纖一端傳至光纖另一端,所以,光纖臨界接受角為:
故光在SIPOF光纖的傳輸方式為全反射式鋸齒型。
光纖數(shù)值孔徑是光纖一個(gè)重要指標(biāo)之一,NA值越大,則θ0越大,光纖臨界入射角越大,則光纖端面接受光或發(fā)射光角度越大,光纖的集光能力愈強(qiáng),愈便于光纖同光纖連接或同光源耦合。常規(guī)POF的光纖數(shù)值孔徑。
4.子午線在階躍型光纖中的幾何行程和反射次數(shù)
由于子午光線入射光纖中并不是同一角度,故而其在光纖中的幾何行程也不相同。無(wú)論是子午線在光線中的行程計(jì)算公式還是反射次數(shù)計(jì)算公式,都是假定光纖是處于非常理想狀態(tài)下:光纖非常直,光纖直徑均勻,光纖內(nèi)部無(wú)缺陷和光纖入射端面平直等,倘若光纖不在這一理想條件下,則入射子午線全反射的狀況就會(huì)發(fā)生變化,如有的會(huì)從光纖中反射出,有的反射角會(huì)發(fā)生變化等,因此光纖的傳輸損耗也會(huì)增加。
5.斜光線在階躍型折射率POF中的傳輸
所謂斜面光線,就是光在光纖中傳輸中時(shí),并不是像子午光線一樣保證在同一平面內(nèi),它在光纖中傳輸時(shí),其軌道通常是一空間螺旋曲線,其最大入射角比子午線的大,但通常以子午線傳輸表征光纖的傳輸特性,自然這是最理想的一種狀況。
6.光在漸變型折射率分布POF中的傳輸
?對(duì)于漸變型折射率GIPOF,同樣有子午線和斜光纖,這種光纖折射率并不是一恒定常數(shù),而是隨著離軸距離的增加而折射率下降,其漸變折射分布圖參見(jiàn)如下;拋物線型折射率分布光纖具有較小的模式色散的特點(diǎn),漸變折射分布有多種形式,當(dāng)折射率分布按二次方拋物線分布時(shí),子午線在光纖中的傳播路徑為正弦曲線型,參見(jiàn)下圖,斜光纖的傳播路徑為螺旋曲線,漸變型折射率POF多用于短距離數(shù)據(jù)傳輸,用于光纖照明較少。
?這種光纖傳輸?shù)募す饽芰糠植冀咏麲auss分布,即在光纖軸附近具有更高的光能量密度,也就是說(shuō)激光能量更為集中,其傳輸?shù)募す夤β拭芏龋ɑ蚍Q激光強(qiáng)度)I可認(rèn)為與纖芯直徑α的平方成正比。若保持光纖傳輸?shù)募す夤β什蛔兊脑挘瑴p小光纖芯徑即減小傳輸激光能量的光纖纖芯的橫截面面積,則光纖傳輸?shù)募す夤β拭芏葘⒃黾覽5],當(dāng)光在這種GIPOF傳輸時(shí),可以說(shuō)是一種極低能量的傳輸,亦滿足如上所述的公式。
7.側(cè)面發(fā)光POF的傳光原理
側(cè)面發(fā)光POF是指光在光纖傳輸過(guò)程中,不僅將傳輸光從光纖的入射端面?zhèn)鬏斨脸錾涠嗣妫疫€有一部分光從光纖包覆層透射出來(lái),從而形成光纖側(cè)面發(fā)光的現(xiàn)象,這種光纖被稱為側(cè)面發(fā)光POF,其傳光示意圖如下,其實(shí)質(zhì)是傳輸光有一部分從光纖側(cè)面泄漏出,是一種光散射的結(jié)果,對(duì)于單芯側(cè)面發(fā)光POF多是由非固有損耗產(chǎn)生的,而對(duì)于多芯側(cè)面發(fā)光POF則是由于彎曲損耗產(chǎn)生的。
?側(cè)面發(fā)光POF最顯著的特征是側(cè)面發(fā)光,據(jù)JanisSpigulis等人[5].推算,側(cè)面發(fā)光POF的側(cè)面發(fā)光強(qiáng)度是隨其長(zhǎng)度的增加而呈指數(shù)性下降的,同于普通光纖光傳輸方向的發(fā)光強(qiáng)度是隨其傳輸長(zhǎng)度的增加呈指數(shù)下降,在作出如下假定后而得出的結(jié)論:
7.1側(cè)面發(fā)光的原理僅被認(rèn)為是由于光纖芯傳輸輻射引起的。
7.2所有最初的側(cè)面散射光沒(méi)有損耗穿透光纖圓形表面,其結(jié)果是均勻地傳輸至光纖外表面。
側(cè)面發(fā)光POF在長(zhǎng)度為X米處的發(fā)光強(qiáng)度Is(x)可用如下公式表示:
Is(x)=Aexp(-kx)(24)
其中K為側(cè)面發(fā)光系數(shù),單位m-1,常數(shù)A可用如下式表示:
A=(4π)-1I。(expk-1)(25)
其中I。是側(cè)面發(fā)光POF光輸入強(qiáng)度。
因此在實(shí)際使用過(guò)程中,為保證側(cè)面發(fā)光POF側(cè)面發(fā)光強(qiáng)度的均勻性,通常限制側(cè)面發(fā)光POF的使用長(zhǎng)度,并且在側(cè)面發(fā)光POF的兩端皆設(shè)置相同功率的光源或者一端設(shè)置全反射鏡或反光膜,當(dāng)然前者在更長(zhǎng)的使用長(zhǎng)度上保證光纖側(cè)面發(fā)光的均勻性,選用雙光源的側(cè)面發(fā)光POF在某一處的發(fā)光強(qiáng)度IS2(x)可用如下公式(26)計(jì)算。
IS2(x)=A{exp(-kx)+exp[-k(L-x)]}(26)
其中L為側(cè)面發(fā)光POF總長(zhǎng)度。
選用全反射鏡計(jì)算的側(cè)面發(fā)光POF強(qiáng)度可用如下公式計(jì)算,側(cè)面發(fā)光POF的發(fā)光強(qiáng)度和距離的關(guān)系參見(jiàn)如下圖。
ISR(x)=A{exp(-kx)+Rexp[-k(2L-x)]}………(26)
其中R為鏡面反射率。
因存在光傳輸損耗,側(cè)面發(fā)光的亮度將隨著與光源距離的增大而減小,為使光纖單位長(zhǎng)度內(nèi)的亮度接近一致,可對(duì)單端光源的光纖按長(zhǎng)度進(jìn)行刻痕處理,隨光纖長(zhǎng)度遞增,刻痕間距遞減。在實(shí)際使用過(guò)程中,當(dāng)側(cè)面發(fā)光POF的使用長(zhǎng)度在30m以下時(shí),多配用一臺(tái)150W金鹵燈光源,另端配用反光鏡或反光膜;當(dāng)側(cè)面發(fā)光POF的使用長(zhǎng)度在30~60m之間時(shí),多配用兩臺(tái)150W金鹵燈光源,以保證側(cè)面發(fā)光POF的側(cè)面發(fā)光的均勻性,下圖為實(shí)測(cè)三根直徑為14mm的側(cè)面發(fā)光POF側(cè)面光照度示意圖,可以看出當(dāng)選用一臺(tái)150W金鹵燈光源時(shí),1.5m處POF側(cè)光照度為800lx左右,而60m處的照度不到20lx,照度計(jì)測(cè)試時(shí)離光纖的表面距離為2.5cm。
8.熒光POF的傳光原理
熒光POF就是在POF芯材中摻入一定量的熒光劑制備而成的POF,這種POF經(jīng)過(guò)特定波長(zhǎng)的光照射后,將發(fā)出特定波長(zhǎng)的光,其原理比較復(fù)雜,可簡(jiǎn)單認(rèn)為基態(tài)分子中成鍵電子吸收光后激發(fā),然后單線態(tài)分子返回到基態(tài),即發(fā)出熒光。熒光POF按折射率分布結(jié)構(gòu)分類,可分為熒光SIPOF和熒光GIPOF,摻雜有機(jī)染料的POFA最重要特性是在寬波長(zhǎng)范圍內(nèi)提供高功率輸出。熒光POF的傳光原理示意圖如下,它滿足一般的SI型光纖的傳光特性,但入射光的波長(zhǎng)不同于出射光的波長(zhǎng)。
熒光POF還有另一種傳光方式,這就是入射光可從側(cè)面照射熒光POF,出射光從光纖兩端面出射,當(dāng)然入射光的波長(zhǎng)不同于出射光的傳輸波長(zhǎng)。
熒光材料的光特性主要依賴于基質(zhì)材料,熒光POF增益放大特性同泵浦波長(zhǎng)、熒光POF長(zhǎng)度及所用摻雜劑和濃度有關(guān)。所謂增益G是指POF輸出信號(hào)光功率Pout與輸入光功率Pin之間的一種比值。
9.結(jié)語(yǔ)
POF之所以能傳光是因?yàn)楣饫w具有芯皮結(jié)構(gòu),光在POF中傳輸是按全反射原理進(jìn)行傳光的,光在SIPOF中的傳輸方式為全反射式鋸齒型,光在GIPOF中的傳輸方式為正弦曲線型;同時(shí)為了簡(jiǎn)化計(jì)算,選用子午線進(jìn)行了參數(shù)計(jì)算,子午線就是光線的傳播路徑始終經(jīng)過(guò)光纖軸并在同一平面內(nèi),這些參數(shù)計(jì)算包括最大入射角或發(fā)射光角度、數(shù)值孔徑、子午線在階躍型光纖中的幾何行程及反射次數(shù);側(cè)面發(fā)光POF和熒光POF也是按全反射原理進(jìn)行傳光的,對(duì)于單芯側(cè)面發(fā)光POF多是由非固有損耗導(dǎo)致側(cè)面發(fā)光,而對(duì)于多芯側(cè)面發(fā)光POF則是由彎曲損耗產(chǎn)生側(cè)面發(fā)光的。熒光POF經(jīng)過(guò)特定波長(zhǎng)光激發(fā)后發(fā)出特定波長(zhǎng)的光,而且激發(fā)光不僅可從端面入射,而且可從側(cè)面入射。
摘要:塑料光纖POF之所以能傳光是因?yàn)楣饫w具有芯皮結(jié)構(gòu),光在POF中傳輸是按全反射原理進(jìn)行的,光在SIPOF中的傳輸方式為全反射式鋸齒型,光在GIPOF中的傳輸方式為正弦曲線型;子午線就是光線的傳播路徑始終經(jīng)過(guò)光纖軸并在同一平面內(nèi),選用子午線進(jìn)行了參數(shù)計(jì)算,這些參數(shù)計(jì)算包括最大入射角或發(fā)射光角度、數(shù)值孔徑、子午線在階躍型光纖中的幾何行程及反射次數(shù);側(cè)面發(fā)光POF和熒光POF也是按全反射原理進(jìn)行傳光的,對(duì)于單芯側(cè)面發(fā)光POF多是由非固有損耗導(dǎo)致側(cè)面發(fā)光,而對(duì)于多芯側(cè)面發(fā)光POF則是由彎曲損耗產(chǎn)生側(cè)面發(fā)光的。熒光POF經(jīng)過(guò)特定波長(zhǎng)光激發(fā)后發(fā)出特定波長(zhǎng)的光,而且激發(fā)光不僅可從端面入射,而且可從側(cè)面入射。
關(guān)鍵詞:聚合物光纖,塑料光纖,POF,傳光,原理
參考文獻(xiàn)
1.江源,劉玉慶.塑料光纖的發(fā)展史[J].廣東照明電器,2003,(5):21-24
2.郵電部武漢郵電科學(xué)研究院編寫組.激光通信[M].北京:人民郵電出版社,1979.14-20
3.楊同友.光纖通信技術(shù)[M].北京:人民郵電出版社,1986.31-54
4.徐大雄.纖維光學(xué)的物理基礎(chǔ)[M].北京:高等教育出版社,1982.6-16
4.項(xiàng)仕標(biāo),馮長(zhǎng)根.光纖的能量傳輸特性及應(yīng)用[J].光學(xué)技術(shù),2002,28(4):341-342
5JanisSpigulis,DaumantsPfafrods,MarisStafeckis,WandaJelinska-Platece.The“glowing”opticalfiberdesignsandparameters[J].SPIE,1997,2967:231-236.
6.江源,鄒寧宇.聚合物光纖[M].北京:化學(xué)工業(yè)出版社,2002.129-140