高分子材料的作用范文

時間:2023-12-22 18:03:33

導語:如何才能寫好一篇高分子材料的作用,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

高分子材料的作用

篇1

關鍵詞:功能高分子材料;研究現狀;發展前景

一、功能高分子材料的概念及開發意義

功能高分子材料,是指具有一定傳遞或存儲物質、信息及能量作用的高分子和高分子復合材料。這使得功能高分子材料不僅具有原來的力學性能,同時還兼具如光敏性、導電性、化學反應活性、生物相容性、選擇分離性、能量轉換性等一系列其他特定性能。按照其功能劃分,功能高分子材料主要可分為4類:①物理功能:具體包括超導、導電、磁化等功能;②化學功能:具體包括光的聚合、降解、分解等;③生物功能:具體來說包括生理組織及血液的適應性等;④介于化學、物理之間的功能:主要是指高吸水、吸附等功能方面。

功能高分子材料由于具備特殊的功能,受到了各個領域的廣泛重視,特別是其不可替代的諸多特性都為很多領域的技術進步提供了基礎和前提,甚至已經因此而誕生出了一批先進的、符合社會發展潮流的新產品。因此,當前各國都加大了對功能高分子材料的人力物力財力投入,面對時間各國的競爭,我國也需要盡快加大對功能高分子材料的研發力度,從而擺脫我國國防、電子、醫藥和其他尖端領域嚴重依賴國外功能高分子材料市場的困境。

二、功能高分子材料的研究現狀分析

目前針對功能高分子材料的研究和應用現狀,主要集中于功能高分子材料的光功能、電功能、生物功能以及反應型功能應用這幾個方面:

1.光功能高分子材料

目前的光功能功能高分子材料的研究和應用主要體現在光固化材料、光合作用材料、光顯示用材料以及太陽能光板這幾個方面,這些具體的應用能通過對光的吸收、儲存、傳輸、以及轉換功能,實現對光能的有效利用。例如,目前已經能夠通過光功能高分子材料的運用實現光傳導來幫助植物的光合作用。此外,運用光功能高分子材料實現手機的太陽能充電也已經成為現實。

2.電功能高分子材料

電功能高分子材料,除了具備良好的導電性能外,其電導率還能根據應用狀況的不同,在半導體、金屬態和絕緣體的范圍進行變化。此外,由于電功能高分子材料一般密度較小、易于加工,同時具備良好的耐腐蝕性,在當前的工業領域中也被廣泛的應用。

3.生物功能高分子材料

生物功能高分子材料在生物領域被廣泛的應用。如常見的有,由生物功能高分子材料所制成的人體植入物(視網膜植入物、腦積水引流裝置等)以及人體義肢等。

4.反應型功能高分子材料

這種高分子材料是一種具備很強化學活性的高分子材料,能夠有效的促進化學反應。它是通過對構建高分子骨架,并將小分子反應活性物質通過離子鍵、共價鍵、配位鍵或物理吸附作用進行骨架填充,以實現高分子功能才能的強化化學合成與化學反應的效果。

三、功能高分子材料的發展前景及趨勢分析

功能高分子材料具備很多優勢特征,這些都使得其更加符合經濟發展和社會發展的需求,這也使得功能高分子材料的研究工作在各國的競爭中日益白熱化。而去隨著投入的不斷深化,和技術的不斷完善。新型功能高分子材料必然在我們的尖端科學及日常生產生活中扮演越來越重要的角色。功能高分子材料的幾種發展趨勢。

1.復合高分子材料

目前,功能高分子材料正逐步由均質材料向著復合高分子材料的方向發展,同時其材料的功能也向著多功能材料的方面發展。復合高分子材料往往是在一種基體材料(如金屬、陶瓷、樹脂等)上,加入增強或增韌作用的高聚物,再通過將多相物復合成一體,就形成了新的復合高分子材料,這種高分子材料能夠充分發揮各相的性能優勢,因此具有廣泛的發展應用前景。在今后的發展中,航天科技、醫療衛生、生活家居、甚至汽車制造等領域,都需要各種高性能的復合高分子材料。

2.環境友好型高分子材料

經濟的粗放發展,給整個地球h境都帶來了深重的災難,而隨著人們對環保問題的日益重視,各國對各種材料的生態可降解性要求也日益突出。因此,環境友好型高分子材料的開發和深入研究工作,也引起了各國的重視。當前,生物降解技術和環境友好型高分子材料技術大多掌握在發到國家,我國目前還處于追趕階段。隨著世貿組織對環保觀念的更加重視,環境友好型高分子材料在產品中的應用優勢也將日益顯著,為了把握這一趨勢,我國要積極開發研究出有自主知識產權的生物降解技術和環境友好高分子材料。

環境友好型高分子材料,通過易水解的高分子的作用在各種生物酶的作用下,能夠加速材料的水解反應,幫助材料進行生物降解。這種高分子材料目前研究的重點方向在理化性能、生物相容性、降解速率的控制以及緩釋性等方向。

3.隱身性能高分子材料

隱身性能高分子材料的研究應用主要在軍事領域,其也是當前各國的尖端軍事技術的研究方向之一。以往的隱身材料多采用超微粒子和細微粉,實踐證實,通過吸收衰減層、激發變換層以及反射層等多層材料的微波吸收,能夠取得一定的吸波效果,達到隱身的目的。但是,由于材料制備復雜,且雷達技術的日益發展,給隱身技術提出了更高的挑戰。此后,隱身性能高分子材料必然是向著厚度更小、質量更輕、功能更多以及頻帶更寬的方向發展。

篇2

[關鍵詞]生物可降解;高分子材料;研究;進展

中圖分類號:TG422文獻標識碼:A文章編號:1009-914X(2018)20-0195-01

隨著社會生活的不斷進步和科技水平的提高,我國對高分子材料的研究越來越深入,高分子材料的使用范圍也越來越廣。高分子材料的大范圍推廣,一方面給人們的日常生活提供了更加方便快捷的使用材料,另一方面也帶來了嚴重的環境污染。研究生物可降解高分子材料,將生物可降解高分子材料應用到當前的社會生活中,是構建環境友好型、資源節約型社會的基本要求,也是貫徹落實科學發展觀與可持續發展觀的要求,要不斷探索更加科學的方法,增強對生物可降解高分子材料的研究,推動生物可降解高分子材料的發展。

一、生物可降解高分子材料的基本特點

生物可降解高分子材料比較傳統的高分子材料而言,其合成和降解的過程對環境造成的污染比較小。首先,生物可降解高分子材料的降解時間要明顯短于普通塑料的降解時間,可以有效降低對環境的污染。其次,生物可降解高分子材料在降解過程中不會出現有毒氣體,也不會釋放重金屬污染物[1]。再次,生物可降解高分子材料在焚燒的過程中不會產生對人體有害的化學物質。最后,生物可降解高分子材料的處理回收方式比較簡單,可以與普通生活垃圾一起進行填埋,也可以二次加工成肥料等進行循環利用。

二、生物可降解高分子材料的降解機理

與傳統高分子材料相比,生物可降解高分子材料的降解受自然環境和自然條件的影響比較大,降解過程比較簡單,并且降解之后產生的物質對自然環境的傷害比較小。

(一)物理作用

高分子材料可以通過一定的物理反應進行降解,在特定的條件下,光、溫度、輻射等外界條件都會對生物可降解高分子材料產生影響,使其表面特征或者機械性能發生變化。比如光敏性聚合物的降解,主要就是利用光的作用,通過對紫外線的吸收,使聚合物的分子具有一定的活性,在一定的物理作用下,使聚合物被降解[2]。

(二)化學作用

生物可降解高分子材料在降解過程中會受周圍環境變化的影響,環境中水分、濕度的變化會對生物可降解高分子材料產生化學作用,使材料分子之間的分子鏈斷裂,斷裂的分子在環境的影響下重新組合,影響高分子材料的降解。

三、生物可降解高分子材料的應用

(一)生物可降解高分子材料在農業上的應用

我國是傳統的農業大國,每年用于農業生產的農用地膜、農產品保鮮膜以及化肥包裝袋等數量都非常大,這些都會對環境造成一定的污染。就比如傳統的地膜,其回收比較困難,并且在自然環境中很難被降解,不僅污染環境,長期惡性循環,還會降低土壤的透氣性。將生物可降解高分子材料應用到農業生產中,可以有效的緩解對環境的污染[3]。生物可降解高分子材料中含有甲殼素或者殼聚糖,這些物質在自然環境下很容易被降解,并且降解之后產生的物質不但不會污染環境,還能為農作物的生產提供養分,同時,能改善土壤質地,使土壤更適合農作物的生長。利用生物可降解高分子材料生產的地膜可以在土壤中自行降解,轉化成有利于農作物生長的營養物質,減少對環境的污染和破壞。

(二)生物可降解高分子材料在包裝材料上的應用

將生物可降解高分子材料應用到包裝材料中,可以有效減少包裝廢品對環境造成的污染。將纖維素和其衍生物進行加工,按照不同產品的包裝需求采用不同的加工工藝,可以生產制造出適合食品、洗漱用品或者其他日用品的外包裝。首先纖維素的提取工藝比較簡單,生產成本比較低。其次纖維素可以在自然環境下被有效降解,可以降低包裝廢品對環境的污染。傳統的包裝材料多以不容易被降解的塑料為主,制作工藝比較復雜,制作成本較高,并且廢棄的包裝對環境造成的污染比較嚴重。生物可降解高分子材料能夠替代傳統的包裝材料,減少廢棄包裝對自然環境的危害。

三、結論

研究生物可降解高分子材料,是建設環境友好型和資源節約型社會的要求,也是貫徹落實科學發展觀、實現長久可持續發展的重要途徑,將生物可降解高分子材料廣泛應用在農業和包裝材料上,能夠有效減少傳統塑料對自然環境的污染,有利于生態環境的恢復。因此,研究和發展生物可降解高分子材料,是當前構建社會主義和諧社會、保護自然生態環境的必行之路。

參考文獻 

[1] 曾少華,申明霞,段鵬鵬,韓永芹,王珠銀.可生物降解高分子材料的研究與進展[J].粘接,2015,36(01):72-76. 

[2] 梁敏,王羽,宋樹鑫,劉林林,齊小晶,張玉琴,董同力嘎.生物可降解高分子材料在食品包裝中的應用[J]. 塑料工業,2015,43(10):1-5+18. 

篇3

關鍵詞新型高分子材料

1新型高分子材料的分類

1.1高分子分離膜

高分子分離膜是用高分子材料制成的具有選擇透過性功能的半透性薄膜。與以溫度梯度、壓力差、電位差或濃度梯度為動力,使液體混合物、氣體混合物或有機物、無機物的溶液等分離技術相比,具有高效、省能和潔凈的特點,因而被認為是支撐新技術革命的重大技術。膜的形式有多種,一般用的是空中纖維和平膜。應用高分子分離膜的推廣可以獲得巨大的經濟效益和社會效益。

1.2高分子磁性材料

高分磁性材料是人類在開拓磁與高分子聚合物新應用領域的同時,賦予磁與高分子傳統應用以新的涵義和內容的材料之一。早期的磁性材料源于天然磁石,后來才利用磁鐵礦燒結或鑄造成為磁性體。現在工業常用的磁性材料有稀土類磁鐵、鐵氧體磁鐵和鋁鎳鉆合金磁鐵等三種。它們的缺點是硬且脆加工性差。為了克服這些缺陷,將磁粉混煉于橡膠或塑料中制成的高分子磁性材料。這樣制成的復合型高分子磁性材料,不僅比重輕,容易加工成復雜形狀、尺寸精度高的制品,還能與其它的元件一體成型。因而這樣的材料越來越受到人們的關注。高分子磁性材料主要可分為結構型和復合型兩大類。目前具有實用價值的主要是復合型。

1.3光功能高分子材料

所謂光功能高分子材料指的是能夠對光進行吸收、透射、轉換、儲存的一類高分子材料。這類材料主要包括光記錄材料、光導材料、光加工材料、光轉換系統材料、光學用塑料、光導電用材料、光合作用材料、光顯示用材料等。光功能高分子材料可以制成品種繁多的線性光學材料,像普通的安全玻璃、各種棱鏡、透鏡等。利用高分子材料曲線傳播的特性,又以開發出非線性的光學元件,如塑料光導纖維等。先進的信息儲存元件光盤的基本材料就是高性能的聚碳酸脂和有機玻璃。

2開發新型高分子材料的重要意義

從高分子材料的出現到現代,世界工業科學不再只是對基礎高分子材料的開發研究。從90代開始,科學家們就將注意力轉到了高智能的高分子材料的開發上。現代工業對于新型高分子材料的需求日益增加。新型高分子材料的開發主要集中在制造工藝的改進上,以提高產品的性能,節約資源,減少環境的污染。就目前而言,以茂金屬催化劑為代表的新一代聚烯烴催化劑的開發仍是高分子材料技術開發的熱點之一。開發應用領域在不斷擴大。在開發新聚合方法方面,著重于基團轉移聚合、陰離子活性聚合和微乳液聚合的工業化。與此同時,我們要重視在降低和防止高分子材料在生產和使用過程中造成的環境污染。我們應該大力進行有利于保護環境的可降解高分子材料的研究開發。新型高分子材料的開發,不但能夠滿足現代工業發展對于材料工業的高要求,更重要的是能夠促進能源與資源的節約,減少環境的污染,提高生產的能力,體現現代科技的高速發展。

3新型高分子材料的應用

現代高分子材料相對于傳統材料(如玻璃)而言是后發展的材料,但其發展速度的應用廣泛性卻大大超過了傳統材料。高分子材料不僅可以用于結構材料,還可以用于功能材料。現階段新型高分子材料大致包括高分子分離膜,高分子復合材料,高分子磁性材料,光功能高分子材料這幾大類。這些新型的高分子材料在人類的社會生活、醫藥衛生、工業生產和尖端技術等方方面面都有廣泛的應用。例如,在生物的醫用材料界中研制出的一系列的改性聚碳酸亞丙酯(PM-PPC)的新型高分子材料是腹壁缺損修復的高效材料;開發的苯乙烯、聚丙烯等熱塑性樹脂及聚酰亞胺等熱固性樹脂復合材料,這些材料比模量和比強度比金屬還高,是國防、尖端技術等方面不可缺少的材料;在工業污水的處理中,在不添加任何藥劑的情況下,可以利用新型高分子材料的物理法除去油田中的污水;同樣,在藥物的傳遞系統中應用新型的高分子材料,在包轉材料中的應用,在藥劑學中應用等等。

4結語

新型的高分子材料已經滲透于人類生活的各個方面。材料是是人類生活和生產的物質基礎,人類用來制造各種產品的物質,是一個國家工業發展的重要基礎和標志。隨著時代的發展,技術的進步,高分子材料作為材料的重要組成部分越來越能影響人類的生活和工業的進步。不同于我們已經開發研究成熟的一些傳統的材料,高分子材料的研究開發存在著無窮的潛力。正如一些科學家預言的那樣,新型高分子材料的開發很有可能會帶來現代材料界的一次重大改革。材料是人類用來制造各種產品的物質,是人類生活和生產的物質基礎,是一個國家工業發展的重要基礎和標志。我國國民經濟和高技術已進入高速發展時期,需要日益增多的高性能、廉價的高分子材料,環境保護則要求發展環境協調、高效益的高分子材料制備和改性新技術,實施高分子材料綠色工程。作為材料重要組成部分的高分子材料隨著時代的發展,技術的進步,越來越能影響人類的生活,工業的進步。

參考文獻 

[1] 董維煜.關于高分子材料成型加工技術的探討[J].科技與企業,2014(13). 

[2] 羅華云,孫玲.高光注射成型技術的發展及應用[J].現代制造技術與裝備,2009(04). 

篇4

關鍵詞:高分子材料;加工;形態控制

一、引言

高分子材料的性能與大分子的化學與鏈結構有著密切的關聯,且材料形態也是重要影響因素之一。聚合物氛圍結晶、取向等幾種形態,多相聚合物擇優擴相形態。聚合物制品形態的形成源自于加工中復雜的溫度場與外力場作用。由此可見,關于加工過程中高分子材料形態控制具有重要的研究意義。

二、我國高分子材料加工中形態控制研究現狀

高分子材料形態與物理力學性能之間的關聯十分緊密,這也是高分子材料的重點研究課題。相較于其他材料,高分子材料具有非常復雜的形態,具體表現為高分子鏈的拓撲結構、共聚構型以及剛柔性非常復雜,在分子設計與結構調整中,可以對一些合成方法加以運用;其次,在高分子長鏈結構的影響下,其熔體的粘彈性非常突出;此外,高分子具有非常寬的弛豫時間,就是受到很小的應變作用,其產生的非線也會非常強烈。

對于聚合物的成型過程而言,在非等溫場、不同強度的剪切與拉伸場的影響之下,就分子尺度而言,其大分子鏈會發生一系列化學反應;就納米與亞微米尺度而言,大分子會有結晶與取向現象發生,如此一來就會有超分子結構的形成;而根據亞微米與微米尺度,多相聚合物會有不同相形態的形成,甚至會出現一些缺陷。而這些形態的影響因素非常廣泛,例如加工中的外場強弱、作用頻率、作用方式以及時間等。然而,現階段關于這些問題的研究雖然有所深入,但相應的理論體系尚未成熟。此外,隨著新聚合物的開發不斷深入,在高分子材料加工中涌現出越來越多的成型加工方法,顯然這使聚合物加工中的形態控制成為了一個長期的研究課題,對于高分子物理領域的發展無疑有著重要的影響。

在我國,關于新材料的研究起步以跟蹤模仿為主,在知識產權與創新理論方面有所欠缺,并且基礎研究與技術推廣的通暢性也有待提升。其次,相關人員并不重視傳統材料的升級與優化,很多高性能材料品種對進口的依賴性依然較強。再者,材料成型與加工設備也沒有得到應有的關注,與一些發達國家相比,我國材料研究與整體發展依然存在諸多不足,顯然這與國民經濟與設備的發展需求不相適應。

聚合物的性能取決于形態,因此,在高分子材料領域中,聚合物形態與性能關系的研究一直以來都受到高度重視,然而在實踐中,我們在二者之間的結合方面的研究上依然有所欠缺,具體可以從以下幾個方面得到體現:

第一,在剪切速率與剪切應力非常低的情況下,聚合物共混物相形態的演化研究不斷深入,然而在實踐中,一些主要聚合物成型加工的剪切速率主要在10?~104s-1范圍內,顯而易見,相關研究成果對實際生產的指導作用依然有所欠缺。

第二,基于不同條件的不同特性聚合物,其共混物形態發展與演化研究依然是主要研究內容,而形態與性能關系的研究依然有所欠缺。

第三,在加工過程中,受到部分特殊外場的作用,聚合物凝聚態結構與相形態結構的研究有待深入。

截至今日,在聚合物及其復合物的成型加工中,就算成型設備與工藝條件屬于常規,在外場作用下,人們依然沒有徹底了解結構形態受到的影響,僅僅對一些粗略的定性關系有所認識,甚至有的推斷還是錯誤的。以雙螺桿擠出過程為例,人們僅對不同螺桿原件組合下外力場作用的不同會改變溫度場,進而對產品產量、外觀與內在性能產生影響這一規律有所了解。然而這一影響的具體方式卻沒有清楚的認識,業界研究人員也無法制定出定量的指導方案。在管材生產中,不管是落錘沖擊不達標,還是縱向收縮產生波動,都沒有搞清楚原因,也無法拿出改進方案,大部分情況下都是憑借經驗進行處理。因此,現階段很多成型設備與工藝控制的效果是否取得理想效果,我們依然難以準確判定。

一直以來,關于生產實踐中的問題研究一直沒有得到基礎工作研究人員的關注。在成型設備與工藝技術的研究與開發中,相關規劃也缺乏系統性。現階段,我國塑料制品年產量超過了2200萬噸,塑料機械工業取得了迅猛發展。然而在很多企業生產實踐中,整個效率與質量依然有待提升,產生的能耗也沒有得到有效控制。鑒于此,高分子材料成型加工將會成為未來高分子材料領域的研究重點,必須將側重點放在高分子材料制品的研究上來,而不是過分的關注材料這一因素,只有如此,才能夠提高高分子材料志制品質量。

三、高分子材料加工中形態控制的研究趨勢

第一,基于常規的成型設備條件,聚合物及其復合物典型制品成型或型材生產在成型加工時,在設備與工藝條件改變的情況下,其形成的外場會有所差異,進而發生相應變化,例如塑化、結晶、賦型以及流動等,這些變化會改變制品形態、結構以及性能。

第二,極端的加工條件極端會改變聚合物及其復合物的形態結構變化規律,例如結晶結構、晶體大小等,在這類條件下,還需要盡可能對大尺寸高分子晶體的制備進行探究。

第三,在對新外場條件的分析、推斷以及設定之下,通過對聚合物及其復合物結構形態與性能受到的影響研究,才能夠圍繞新的成型方法或具有特殊性能的高分子材料的制備進行探索,進而實現高分子材料性能的改善,并將節能性、經濟性等方面的優勢充分發揮出來。

四、結束語

總而言之,在未來工業領域的發展中,高分子材料的應用具有重要意義,而高分子材料加工中的形態控制則成為發展高分子技術的關鍵。作為相關研究人員,必須結合高分子材料加工中的形態控制研究與實踐中存在的問題,采取相應的改進與優化對策,提高高分子加工整體水平,如此才能夠從真正意義上推動我國高分子材料加工領域的進步。

參考文獻:

[1]李忠明,馬勁.加工過程中高分子材料形態控制的研究進展[J].中國科學基金,2004,18(3):154-157.

[2]李又兵,申開智.形態控制技術獲取自增強制件研究[J].高分子材料科學與工程,2007,23(1):24-27.

篇5

【關鍵詞】高分子材料;功能助劑;現在發展趨勢

1 高分子材料功能助劑行業現狀

(1)高分子材料的發展對于化學助劑行業有高度的關聯性。高分子材料化學助劑已經成為現代化學工業體系和材料科學體系的重要交叉領域之一,在高分子材料生產、儲運、加工、使用過程中的作用愈加突出,幾乎每一種高分子材料的每一種性能都依賴相對應的化學助劑實現。

(2)化學助劑行業發展的專業性越來越強。隨著經濟水平對于高分子材料要求的提高,新材料技術和化工產業的不斷進步,高分子材料化學助劑產業整體呈現快速發展的態勢,表現為化學助劑新品種的不斷出現,需求數量的較快增長,以及化學助劑性能的不斷改進。國際同行業巨頭往往根據自身技術優勢和經營特點選擇幾大類別的化學助劑進行生產經營,呈現出化學助劑行業發展的較強專業性。

(3)中國化學助劑行業發展市場潛力巨大。中國在高分子材料領域的高速發展,使我國已成為全球高分子材料化學助劑需求的增長重心。

(4)中國高分子材料化學助劑行業處于加速發展階段。由于我國高分子材料化學助劑行業起步晚,行業的整體發展水平與國際水平還存有差距,一方面單一企業經營規模較小、新結構物產品匱乏、化學助劑應用技術服務能力較差、行業集約化程度不夠、產品未形成集約化規模經營、高端產品少、許多產品品種形成系列化。另一方面,中國化學助劑行業呈現快速發展的態勢,專業化、規模化、技術型企業不斷出現和發展,部分企業已經在全球具有很好的知名度。

2 高分子材料功能助劑的發展分析

2.1 分離純化技術

分離純化技術是指將特定化學物質與周邊干擾物質彼此分離,獲得單一高純度化學物質的技術。分離提純的方法主要包含兩大內容:一是研究獲得高純度物質的分離提純方法,二是研究如何將這種分離提純方法,實現大規模的工業生產。分離提純的方法不拘泥于物理變化還是化學變化,在可能的條件下使樣品中的雜質或使樣品中各種成分分離開來的變化都可使用。化學助劑生產就是利用前述一種或幾種技術的組合對產品原料、中間體、產成品進行純化,使其滿足工藝過程和質量指標的各項要求。

2.2 化學合成技術

化學合成技術是指利用現有化學物質創造出具備特定結構和性能的化學物質技術,主要包括:鹵化技術、磺化技術、硝化技術、酯化技術、氧化技術、還原技術、烷基化技術、酰化技術、氨解技術、羥基化技術、縮合技術、聚合技術、官能團的引入和選擇性轉換技術等單元反應技術。化學助劑生產就是利用前述一種或幾種技術的組合對產品原料、半成品進行化學合成,進而得到成品或中間體的過程。

2.3 檢測分析技術

檢測分析技術是指針對特定目標物質,獲得其成分、結構、性能、純度等具體參數的技術手段,主要包括:高效液相色譜分離檢測技術、氣相色譜分離檢測技術、原子吸收光譜檢測技術、氣-質聯機差熱分析技術、熱失重檢測分析技術、激光粒度檢測技術、X 衍射分析檢測技術、紅外和紫外光譜分析檢測技術及其他一系列化學或物理分析技術等。化學助劑的生產需要選用適當的檢測技術或幾種技術的聯合,對原料、中間體、產成品和生產過程控制的各項指標進行分析檢驗以確保符合客戶和生產的需要。

2.4 化學助劑應用技術

高分子材料化學助劑應用技術是在化學助劑復合技術基礎之上發展而來,其主要內容包括:一是指化學助劑在完成化學合成之后的劑型選擇和確定,比如造粒、乳化、微粒化等,以使化學助劑適宜于在高分子材料中更好發揮作用;二是指為確保不同的高分子材料獲得特定的功能和用途,需要添加不同品種、不同功能、不同劑量的各種化學助劑來實現高分子材料的性能改善目標,

3 高分材料功能助劑的發展趨勢

(1)高效化。高效化是指在確定助劑用量的情況下實現效果最大化。主要途徑為助劑的高分子量化,普通的助劑分子量較低,容易揮發遷移、滲出,降低了助劑的效能,而高分子量化可減少揮發性、遷移性,提高熱穩定性、耐水解能力、與材料的相容性,而使助劑的效能得以充分發揮。

(2)多樣化。高分子材料化學助劑的多樣化不僅在于新品種的出現和應用高分子材料范圍的擴大,更在于其作用途徑的多樣化。高分子材料化學助劑的功能是由其相應的官能團結構決定的,一方面,傳統的官能團結構不斷得到改進和完善,使產品序列不斷豐富,另一方面,新的官能團結構不斷被發現,使助劑發揮作用的途徑呈現多樣化。

(3)復合化。復合化的是各種高分子材料化學助劑的共混物,目的是令高分子材料化學助劑具有多功能性和增強協同效應,使應用簡單方便。現代的復合技術已非初期的幾種助劑簡單混合,已發展成為多組份協效性能的研發,各組分之間協同機理的研究和協同組分的開發將是高分子材料化學助劑復合應用技術研發的關鍵。

(4)系列化。系列化指通過對同一類助劑產品的結構和其應用性能發展規律的分析研究,將系列化的新助劑產品的主要參數、類型、性能、基本結構等作出合理的安排與計劃,以協調同類產品、配套產品和目標高分子材料之間更加合理的協同關系,從而充分發揮助劑產品的協同效應和協配性,獲得更好的市場通用性。

(5)環保化。隨著環保法規日益嚴格和可持續發展需要,環保化將成為化學助劑發展的重點。一方面是化學助劑制造過程的清潔生產工藝的開發,節能減排;另一方面主要為發展環境友好助劑,限制或禁止使用對人體和自然環境有毒有害的助劑。

4 結束語

隨著高分子材料化學助劑高效化、多樣化、復合化、環保化、系列化的趨勢不斷發展,高分子材料化學助劑的各類相關技術也沿著上述趨勢不斷演變進步。高分子材料化學助劑企業只有在掌握化學助劑主體技術的基礎之上,沿著發展趨勢不斷研發新技術,才能在未來的競爭中獲得優勢地位。

參考文獻:

[1]白凡飛,賀平,賈志杰,黃新堂,何云.原位生成法制備單分散的納米氧化鋅分散液[J].材料科學與工程學報,2005(05).

篇6

關鍵詞:建筑材料;高分子材料;回收利用

隨著社會經濟發展水平的逐步提高,社會發展的范圍也得到擴大,現代建筑材料中,主要應用以塑料、橡膠、纖維為主的高分子材料作為主要的建筑材料,高分子材料在建筑材料中的應用,可以降低建筑的成本,實現現代建筑的使用壽命得到延長,但建筑材料中廢舊高分子材料應用的回收不當,對社會環境造成較大的污染,結合高分子材料的特性,對高分子的回收利用進行探究。

1廢舊高分子材料的危害分析

高分子材料主要是由塑料、橡膠以及纖維等資源,是一種新型符合建筑材料,廢舊的分子如果不能得到及時降解,則會在太陽光的作用下發生化學反應,產生以二氧化硫為主的污染氣體[1],對造成大氣污染,同時,高分子中的塑料成分中含有大量的聚乙烯,可降解性較差,從而在社會中產生有色污染垃圾,對社會環境造成直接污染,嚴重影響了社會環境的建設。結合以上對高分子材料的危害的分析,提出高分子在現代建筑材料中回收利用的分析措施,實現高分子在建筑材料中應用的進一步探究。

2建筑材料中廢舊高分子的回收利用

2.1建筑材料墻體的應用

高分子在建筑材料中的應用,可以作為建筑材料墻體,高分子轉換為玻璃塑料混合墻體,高分子的主要材質中塑料可以到達塑性的作用,從而實現建筑材料的外部形態結構得到穩固,大大提高了現代建筑墻體的穩定性和固定性,此外,高分子制作的新型融合性結構中充分發揮高分子抗壓,耐高溫的特點,而新型建筑墻體中融合了玻璃材質,使廢舊高分子轉化后的建筑墻體可以達到比傳統墻體建結構更加完善的建筑穩定性受壓能力,為廢舊高分子的二次利用提供了應用的新范圍[2],為我國現代建筑行業的發展提供新的符合材料。

2.2金屬橡膠混凝土

金屬橡膠混凝土是現代建筑中應用的一種新型建筑材料,主要由不同硬度的金屬,塑料、橡膠等部分組成[3]。金屬橡膠混凝土的應用能夠解決現代墻體建筑中存在的墻體裂縫等問題,可以提高施工建筑的密封性。例如:應用傳統的建筑材料進行施工建筑中,施工材料受到墻體的壓力或者溫度的影響,容易出現墻體裂縫或者密封性降低的情況發生,導致建筑施工的質量出現問題,采用金屬橡膠混凝土后,墻體施工后,應用新型混凝土對墻體建筑充的對接縫進行外部填充,新型混凝土中含水量較低,能夠解決墻體施工建筑中施工開裂的問題,提高了現代建筑的施工質量。

2.3混合建筑保溫層的轉化

高分子材料在建筑應用材料中的回收利用,轉化為混合建筑保溫層,是直接的綜合利用的體現。現代建筑中墻體保溫層建筑是主要的建筑問題之一,傳統的墻體保溫層采用雙層保溫板,但保溫板經過一段時間的應用后,受到墻體中水泥的侵蝕,使保溫板的保溫效果下降,用戶入住后,一段時間后室內溫度明顯降低,房屋建筑的保溫效果下降,高分子可以轉化為泡沫保溫層,新型高分子混合泡沫保溫層的主要成分是塑料和橡膠,可以抵抗水泥長時間的形侵蝕,到達保證保溫層長期持久豹紋的效果。此外,新型混合保溫層具有較好的吸聲作用,能夠達到施工墻體建筑保溫效果好的同時增強了墻體的隔音效果,完善我國建筑施工技術水平的進一步優化發展,實現廢舊高分子的綜合應用。

2.4新型防水符合材料

高分子材料在現代建筑領域的應用,為我國建筑施工的材料創新應用提供了更加全面的應用范圍。高分子材料的應用,可以達到新型防水材料的使用。現代建筑施工中,采用硅酸水泥和粉煤灰以及聚乙烯作為主要的構成材料,新型防水材料的應用,可以實現外墻墻體建設與保溫層之間的隔水性增強[4],能夠打破傳統墻體建筑保溫層中保溫層受到外部墻體滲水的影響情況,新型防水材料中聚乙烯可以使施工材料表面形成保護膜,達到及時阻隔外部墻體滲入到墻體中水分的作用,實現我國整體建筑施工墻體的防水性得到大大提高。例如;新型符合防水層可以將外部墻體滲入的水分進行阻隔,聚乙烯將深入的水分轉接給粉煤灰,粉煤灰吸收水分,保持保溫層的環境干燥,達到保護墻體保溫性,延長墻體使用壽命的作用。

2.5復合地板的應用

高分子在建筑材料中的回收利用,體現為復合地板的應用,新型建筑材料的施工建筑具有加強的耐用性,復合地板的主要材料是由傳統的木質材質和聚乙烯作為主要的材質,地板的木質材料保留了傳統地板中木質地板材質問題,同時融合聚乙烯可以提高地板的防水性和耐磨性,表面的聚乙烯薄膜能夠達到保護地板日常應用中與堅硬物體之間的摩擦痕跡,增強地板的耐磨程度;此外,新型符合地板可以保護地板不受到蛀蟲的影響,延長地板在實際的使用壽命。

3結論

高分子是現代社會建設中經常應用的一種建筑材料,結合建筑材料對廢舊高分子技術的探究分析,實現我國現代社會發展材料綜合應用,促進我國現代社會發展資源的綜合利用。

參考文獻

[1]曹新鑫,何小芳,胡紅衛.廢舊高分子材料在建筑材料中的回收應用[J].磚瓦,2006(11):54-56.

[2]呂洋,孔令元.淺析廢舊高分子材料在墻體建筑中的回收與利用[J].科技視界,2013(32):198.

[3]任桂蘭,楊澤志,李青山.21世紀的新資源———廢舊高分子材料的回收與利用[J].化工時刊,2002(10):22-24.

篇7

本書分為2部分,第1部分 著眼于聚合物材料在農業和農業化學品中的使用,第二部分聚焦聚合物材料在食品中的角色,共包含6章:1.高分子材料的制備和性能,介紹合成活性高分子材料和復合材料的背景知識及其物理和力學性能;2.高分子材料在種植和植被保護中的應用,分別描述了高分子材料用于作物生長、植物保護、農業建筑材料、水處理和水管理方面的作用;3.高分子材料用于控制釋放農業化學品,主要描述了在農業中使用的高分子材料作為在農業化學中緩釋劑,能長時間避免活性劑被雨水和灌溉沖走;4.高分子材料在食品加工工業中的應用,主要介紹活性高分子在解決常規的食品加工生產中問題的基本原則,如制糖工業、果汁飲料和飲用水;5.高分子食品添加劑,主要介紹了以色素、抗氧化劑、甜味劑為代表的一系列高分子食品添加劑在食品中的使用情況;6.高分子材料在食品包裝和保護中的應用,主要介紹了高分子材料在傳統食品包裝、金屬食品罐頭、可生物降解包裝等方面的應用。

作者撰寫本書的目的是:(1)介紹最新報道的使用活高分子材料的方法,它在農業中解決了與傳統農藥相關的經濟和公共衛生問題;(2)旨在獲得綠色化學的新技術,它可以滿足工業和農業食品生產的環境標準。

本書可供高分子材料領域的研究生和研究人員閱讀參考,對于食品安全、農業和植被保護感興趣的讀者也是有用的參考書。

篇8

關鍵詞:高分子材料;降解;老化;進展

高分子材料在加工、貯存和使用過程中,由于內外因素的綜合影響,逐步發生物理化學性質變化,物理機械性能變壞,以致最后喪失使用價值,這一過程稱為“老化”。老化現象有如下幾種:外觀變化,材料發粘、變硬、變形、變色等;物理性質變化,溶解、溶脹和流變性能改變;機械性能變化和電性能變化等。引起高分子材料老化的內在因素有:材料本身化學結構、聚集態結構及配方條件等;外在因素有:物理因素,包括熱、光、高能輻射和機械應力等;化學因素,包括氧、臭氧、水、酸、堿等的作用;生物因素,如微生物、昆蟲的作用。老化往往是內外因素綜合作用的極為復雜的過程。高分子材料的老化縮短了制品的使用壽命,并影響制品使用的經濟性和環保性,限制了制品的應用范圍。因此,研究引發高分子材料老化的原因及其微觀機理具有非常重要的意義。近年來,高分子老化研究主要集中在探討高分子材料老化的規律、機理,以及環境因素對材料老化的影響等方面,這些工作對于發展新的實驗技術和測試方法,改善材料的生產技術、研制特種材料、逐步達到按指定性能設計新材料等具有重大的指導作用。

1 戶外因素對高分子材料老化行為的影響為的影響

高分子材料在戶外曝露于太陽光和含氧大氣中,分子鏈發生種種物理和化學變化,導致鏈斷裂或交聯,且伴隨著生成含氧基團如酮、羧酸、過氧化物和醇,導致材料韌性和強度急劇下降。關于光氧化降解過程和防止這種降解過程的發生,已有很多研究報導,這些研究工作的基礎是光化學效應,即物質在吸收光后所發生的反應。紫外波長300n m~400nm,能被含有羰基及雙鍵的聚合物吸收,而使大分子鏈斷裂,化學結構改變,導致材料性能劣化,因此歷來是研究熱點。Ibnelwaleed A.等通過自然環境曝露和人工加速試驗,研究了不同支鏈形式LLDPE、HDPE的耐紫外光老化性能。Ibnelwaleed A.等從流變學角度分析了PE紫外光老化歷程,發現LLDPE在紫外光老化過程中同時發生交聯和斷鏈,短支鏈含量高低和老化時間長短直接影響材料性能。另外,(Z-N)催化合成的LLDPE和茂金屬催化合成的LLDPE降解機理相似,但是,對于相同重均分子量和支化度的PE,茂金屬催化合成的LLDPE比齊格勒-納塔催化合成的LLDPE耐降解,而且發現單體的類型對紫外光老化降解影響不大。在80℃和300W紫外光輻照條件下對有機硅和聚氨酯兩種建筑密封膠進行5000小時人工加速老化試驗。發現密封膠老化機理是由于輻照產生的熱作用引起的,在老化開始階段,熱作用使密封膠交聯;而在老化后階段,主要發生分子量下降;紫外線輻射往往破壞側鏈基團。

2高分子材料的老化性能

表征技術及應用在高分子材料老化研究中,性能表征方法對正確反映老化現象、認識并探索老化機理、進而采取合理措施改性,有著非常重要的作用。目前,在高分子材料老化研究中多種表征手段聯用,對高分子材料性能進行多角度考察,深入了解高分子材料老化機理。LEi Song利用TEM、FTIR、X射線光電子能譜、燃燒量熱法等方法考察了PC/TPOSS 的混合物結構和熱降解行為,發現TPOSS顯著影響PC的熱降解過程,因為添加TPOSS明顯降低混合物的熱峰值,并且當TPOSS的添加量在2%時達到最低值。 利用熱重分析、紅外光譜分析、熱解-氣相色譜-質譜聯用技術,考察了聚碳酸酯與聚硅氧烷的共混材料在氮保護條件下的熱降解行為。研究發現,共混物主要的分解溫度在430~550℃左右。添加聚硅氧烷可以降低聚碳酸酯在主要降解段的質量下降速率,在800℃時,添加聚硅氧烷的共混物的殘渣比純凈的聚碳酸酯高,隨著添加量的增加,殘渣從最初的21%增加到45%,研究還發現,聚硅氧烷能促進交聯反應和炭化。隨著老化程度提高,彈性模量增加,應力和伸長率下降;老化較少的樣品顯示韌性,老化時間長久的樣品顯示更多的脆性;另外,老化材料的斷裂,是由于結晶導致的應力開裂。S.Etienne利用低頻拉曼散射(LFRS)、小角X射線散射(SAXS)和DSC,對PMMA、PS、PC、PEN物理老化過程的次級松弛,β松弛及相關α松弛過程進行了研究。利用直接插入探針質譜裂解研究了PC/PMMA共混物的熱氧老化行為。還利用熱刺激去極化電流法(TSDC)、動態介電譜(DDS)聯用方法,研究了聚碳酸酯在玻璃化轉變溫度前后松弛時間的變化,得到PC樣品的τ(Tg)為110s,通過τ(T)和τ(Tg)可以確定玻璃態-熔融態脆化指數m。

篇9

關鍵字:高分子材料;材料應用;生活應用

引 言:

材料是科學與工業技術發展的基礎。一種新材料的出現,能為社會文明帶來巨大的變化,給新技術的發展帶來劃時代的突破。材料已當之無愧的成為當代科學技術的三大支柱之一。高分子材料科學已經和金屬材料、無機非金屬材料并駕齊驅,在國際上被列為一級學科。高分子材料的功能很多,而且應用十分廣泛。

一、高分子材料的定義及特性

1. 高分子材料是以高分子化合物為基礎的材料,高分子材料是由相對分子質量較高的化合物構成的材料,包括橡膠、塑料、纖維、涂料、膠粘劑和高分子基復合材料,由千百個原子彼此以共價鍵結合形成相對分子質量特別大、具有重復結構單元的有機化合物。

2.高分子材料的結構特性

高分子結構通常分為鏈結構和聚集態結構兩個部分。鏈結構是指單個高分子化合物分子的結構和形態,所以鏈結構又可分為近程和遠程結構。聚集態結構是指高聚物材料整體的內部結構,包括晶體結構、非晶態結構、取向態結構、液晶態結構等有關高聚物材料中分子的堆積情況,統稱為三級結構。

3.高分子材料按來源分類

高分子材料按來源分,可分為天然高分子材料、半合成高分子材料(改性天然高分子材料)和合成高分子材料。天然高分子材料包括纖維素、蛋白質、蠶絲、橡膠、淀粉等。合成高分子材料以及以高聚物為基礎的,如各種塑料,合成橡膠,合成纖維、涂料與粘接劑等。

二、生活中的高分子材料的應用

生活中的高分子材料很多,如蠶絲、棉、麻、毛、玻璃、橡膠、纖維、塑料、高分子膠粘劑、高分子涂料和高分子基復合材料等。其中塑料產量最大,主要用于包裝材料、結構材料、建筑材料以及交通運輸材料;橡膠的主要用途為制造輪胎;纖維的主要用途為衣著用料。此外結構高分子還包括工程塑料、耐高溫高分子以及液晶高分子等。

(一)、塑料

塑料是一種合成高分子材料,又可稱為高分子或巨分子,也是一般所俗稱的塑料或樹脂,是利用單體原料以合成或縮合反應聚合而成的材料,由合成樹脂及填料、增塑劑、穩定劑、劑、色料等添加劑組成的,聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯等品種,因為產量大、用途廣、價格低,被稱為“通用塑料”,主要用于日常生活用品、包裝材料和一般零件。它的主要成分是合成樹脂。

1. 塑料的優點:

a)易于加工、易于制造、易于成型。b)可根據需要隨意著色,或制成透明制品。c)可制做輕質高強度的產品。d)不生銹、不易腐蝕。e)不易傳熱、保溫性能好。f)既能制做導電部件,又能制作絕緣產品。塑料本身是很好的絕緣物質,目前可以說g)減震、消音性能優良,透光性好。h)產品制造成本低。

2.塑料的缺點

a)回收利用廢棄塑料時,分類十分困難,而且經濟上也不合算。

b)塑料容易燃燒,燃燒時產生有毒氣體。

c)塑料是由石油煉制的產品制成的,石油資源是有限的。

d)耐久性差,易老化。

3.塑料的應用。

塑料制品在生活中的應用十分廣泛。塑料應用按使用目的分有通用塑料、工程塑料、加纖塑料、合金塑料、降解塑料、納米塑料、功能塑料等。例如透明塑料制成整體薄板車頂。薄板車頂的新概念基于透明靈活的聚碳酸酯或硅樹脂材料,可以被永久性地塑造成單個的聚碳酸酯薄板,也可作為可折疊鉸鏈和封條。拜耳材料科技研發的原型總共配備了四個靈活的薄板部件,形成了四扇“頂窗”,每扇窗都可單獨打開和關閉。導軌用于連接薄板部件,形成一個牢固、透明的聚碳酸酯車頂外殼。一個同樣透明的管子沿車頂結構中央縱向放置,在“頂窗”打開后用來調節折疊薄板。這樣可以形成三維立體結構,組件比平坦的薄板更加牢固。同時也大大降低了單個組件的數量。

(二)、纖維素

纖維素是由葡萄糖組成的大分子多糖。不溶于水及一般有機溶劑。是植物細胞壁的主要成分。纖維素是世界上最豐富的天然有機物,占植物界碳含量的50%以上。纖維素是存在量最大的一類有機化合物。它是植物骨架和細胞的主要成分。在棉花、亞麻和一般的木材中,含量都很高。

纖維素的用途:棉麻纖維大量用于紡織;木材、稻草、麥秸、蔗渣等用于造紙;制造硝酸纖維:火棉(含N量較高,制無煙火藥)、膠棉(含N量較低,制賽璐珞和油漆);制造醋酸纖維:不易著火,用于制膠片;制造粘膠纖維(NaOH、CS2處理后所得,長纖維稱人造絲,短纖維稱人造棉);膳食纖維:第七種營養成分,有利于消化。

(三)、建筑涂料

建筑涂料是一種專供建筑工程裝飾用的涂料,它在涂料產品結構中是產量最大的一類品種。建筑涂料是以各種合成樹脂為主要成膜物, 添加顏料、填料、各種助劑調配而成。具有保護作用、裝飾作用或特殊作用。

下面簡要介紹幾種涂料。

1. 丙烯酸樹脂

丙烯酸樹脂是指丙烯酸酯或甲基丙烯酸酯單體在引發劑的作用下,通過加聚反應生成的聚丙烯酸樹脂及與其他烯類單體如苯乙烯、乙酸乙烯等共聚生成的共聚物樹脂。

日前,在整個涂料工業中,乙烯類單體(尤其是丙烯酸酯單體)合成的樹脂涂料比例不斷增大。究其原因,首先是這類產品的原料是石油化工產品,資源豐富,價格低廉。其次是聚丙烯酸酪樹脂及其共聚物樹脂具有極好的耐光、耐候性,在戶外紫外光照射下不易分解或變黃,能長久保持原有的光澤和色澤;耐熱性好,在170℃下不分解,不變色,甚至在230℃左右或更高溫度下仍不變色;樹脂色澤淺,透明;有很好的耐酸、堿、鹽、油脂、洗滌劑等化學品的拈污及腐蝕性能;極好的柔韌性和最低的顏料反應性。聚丙烯酸釀樹脂及其共聚物樹脂與混凝土具有很好的附著性能,涂裝后,具有預防混凝土性能降低,在一定程度上能增強建筑物的防水性能,因此而成為目前建筑外用涂料及高級內用涂料的最重要的基料之一。

2.聚氨基甲酸酯樹脂

在分子結構中含有氨基甲酸酯重復鏈節的高分子化合物稱為聚氨基甲酸酯樹脂,簡稱聚氨酪。它由異氰酸酯單體和含活潑氫的化合物“逐步聚合”而成。

由于聚氨酯分子結構中存在大量的極性鍵合,以及分子間穩定的氫鍵,因此使聚氨酯涂料具有許多優異的性能,尤其是物理機械性能好,涂膜堅硬、柔韌、光亮、豐滿、耐磨、附著力強,優良的耐高、低溫性能,耐腐蝕性優異,良好的電性能,施工不受季節限制,與多種合成樹脂混灣性優良,可制備各種性能不同的涂料產品等。因此聚氨酯涂料用途非常廣泛,目前各產業部門都有其應用領域。聚氨酯涂料的不足之處主要體現在價格高和毒性大。異氰酸酷單體毒性較大,在涂料制備、施工應用時必須注意加強勞動保護,以防止中毒。

綜上所述,高分子材料業已和我們的生活息息相關。從人類進入天然高分子化學改性階段出現半合成高分子材料起,到1907年出現合成高分子酚醛樹脂,標志著人類開始應用合成高分子材料,再到現代其與金屬材料、無機非金屬材料同成為科學技術、經濟建設中的重要材料,高分子材料必將在各個領域大放光彩,并越來越擁有更重要的作用。

參考文獻:

[1].李良,生活中的高分子材料. 科學與技術 2011、10

篇10

關鍵詞:高分子材料 抗靜電 技術

通常情況下,兩種不同的物質表面接觸的時候就會形成電荷的遷移。在理論上來說,靜電是普遍存在的,我們通過高分子材料一般都具有電絕緣性,所以會在摩擦后易產生帶電現象。這種靜電輕則吸附灰,重則引起火災等重大事故。所以,怎樣消除積聚在高聚物表面的靜電,以及防止高聚物表面產生靜電作用,已成為當今高分子材料研究領域的一個熱門課題。

一、防靜電技術的現狀

目前靜電技術是有很多種的,像我們平時用的塑料以及刷墻時用的涂料都是加入了導電的粉末,還有像石墨以及炭黑和和其他每一種金屬粉末以及易于離子化的很多種無機鹽類等這些是都可以防靜電。有機靜電劑主要是包括季鐵鹽類等。一般常用的有機抗靜電劑是表面活性劑,我們可以把它加到塑料內部之后在擴散到它的表面里,還可以用到塑料的表面上。表面活性分子中有親水的部分還有親油的部分。親水的那部分就留在塑料的表面上,就在表面形成導電層,因此形成了防靜電的表面層。

二、高分子抗靜電的方法概述

高聚物本身對電荷泄放的性質決定了高聚物表面聚集的電荷量,它主要泄放方式為表面傳導、本體傳導以及向周圍的空氣中輻射,在這三者中以表面傳導為主要途徑。這是因為表面電導率一般大于體積電導率,所以高聚物表面的靜電主要受組成它的高聚物表面電導所支配。因此,通過提高高聚物表面電導率或體積電導率使高聚物材料迅速放電可防止靜電的積聚。抗靜電劑是一類添加在樹脂或涂布于高分子材料表面以防止或消除靜電產生的化學添加劑,添加抗靜電劑是提高高分子材料表面電導率的有效方法,而提高高聚物體積電導率可采用添加導電填料、添加抗靜電劑或與其它導電分子共混技術等。

三、添加導電填料

這樣的方法一般的是每種不同的無機導電填料摻入高分子材料基體中去,目前此方法中所使用的無機導電填料主要是碳系填料、金屬類填料等。

四、與結構型導電高分子材料共混

導電高分子材料中的高分子是由許多小的重復出現的結構單元組成,當在材料兩端加上一定的電壓,材料中就有電流通過,即具有導體的性質,凡同時具備上述兩項性質的材料稱為導電高分子材料。與金屬導體不同,它屬于分子導電物質。根本上講,此類導電高分子材料本身就可以作為抗靜電材料,但由于這類高分子一般分子剛性大、不溶不熔、易氧化和穩定性差,無法直接單獨應用,一般作導電填料與其它高分子基體進行共混,制成抗靜電復合型材料,這類抗靜電高分子復合材料具有較好的相容性,效果更好更持久。

五、添加抗靜電劑法

永久性抗靜電劑。永久性抗靜電劑是一類相對分子質量大的親水性高聚物,它們與基體樹脂有較好的相容性,因而效果穩定、持久、性能較好。它們在基體高分子中的分散程度和分散狀態對基體樹脂抗靜電性能有顯著影響。親水性聚合物在特殊相溶劑存在下,經較低的剪切力拉伸作用后,在基體高分子表面呈微細的筋狀,即層狀分散結構,而中心部分呈球狀分布,這種“蕊殼”結構中的親水性聚合物的層狀分散狀態能有效地降低共混物表面電阻,并且具有永久性抗靜電性能。

六、我國高分子材料抗靜電技術的發展狀況

我國許多科研機構和生產企業已陸續開發出一些品種,以非離子表面活性劑為主,目前常用的品種有,大連輕工研究院開發的硬化棉籽單甘醇、烷基苯氧基丙烷磺酸鈉、烷基二苯醚磺酸鉀,上海助劑廠開發目前多家企業生產的抗靜電劑十八烷基羥乙基二甲胺硝酸鹽,另外該廠生產的抗靜電劑硫酸二甲酯與乙醇胺的絡合物、抗靜電劑磷酸酯與乙醇胺的縮合物,北京化工研究院開發的三組份或二組份硬脂酸單甘酯復合物、陽離子與非離子表面活性劑復合物。從抗靜電劑發展來看,高分子型的永久抗靜電劑是最為看好的產品,尤其是在精密的電子電氣領域,目前國內多家科研機構利用聚合物合金化技術開發出高分子量永久型抗靜電劑方面已取得明顯進展。

七、結語

我國的合成材料抗靜電劑的行業發展的前景較好的,我們針對國內的研究以及生產都應該根據現在的需求來調整自己的產業。應該加大新品種開發的力度。近幾年來國外在不斷的開發高性能的抗靜電材料。在我國科研院所應根據我國合成材料制品要求,開發出多種高性能、環保無毒的抗靜電品種,并不斷強化應用技術研究,以滿足國內需求。導電機理無論是外涂型還是內加型,高分子材料用抗靜電劑的作用機理主要有以下幾種:抗靜電劑的親水基增加制品表面的吸濕性,吸收空氣中的水分子,形成海一島型水性的導電膜。離子型抗靜電劑增加制品表面的離子濃度,從而增加導電性。介電常數大的抗靜電劑可增加摩擦體間隙的介電性。增加制品的表面平滑性,降低其表面的摩擦系數。總的來看降低制品的表面電阻,增加導電性和加快靜電電荷的漏泄,減少摩擦電荷的產生。

參考文獻

[1]吳馳飛.有機極性低分子分散型高分子高阻尼新材料的研制[A].材料科學與工程技術——中國科協第三屆青年學術年會論文集[C].2009.09.

[2]袁曉燕.天津大學材料學院高分子材料科學與工程系簡介[A].復合材料.生命、環境與高技術——第十二屆全國復合材料學術會議論文集[C].2010.07.

[3]陳湘寧 王天文.用于最佳靜電防護的本征導電聚合物的最新進展[J].化工新型材料.2008.03.