深海微生物研究論文

時間:2022-12-14 04:02:00

導語:深海微生物研究論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

深海微生物研究論文

【關鍵詞】深海微生物;,,研究;,,開發

摘要:深海微生物是地球生物系統的重要組成部分,深海微生物由于其在生態、資源、環境等方面的重要性,越來越受到人們的重視。本文對深海微生物研究開發的歷史和進展進行概述。

關鍵詞:深海微生物;研究;開發

Researchanddevelopmentofdeepseamicrobes

ABSTRACTDeepseamicrobesaretheimportantcomponentsofearthbiologicalsystem.Deepseamicrobeshavereceivedmoreandmoreintensiveattentionastheirimportanceintheresearchandapplicationinecology,resources,environments,andsoon.Inthisstudy,thehistoryandmainachievementsindeepseamicrobialresearchanddevelopmentswerebrieflyintroduced.

KEYWORDSDeepseamicrobes;Research;Development

深海的概念通常指1000米以下的海洋,占到海洋總面積的3/4,而其中深海沉積物覆蓋了地球表層的50%以上。深海及深海沉積物中的微生物生存面臨高壓,低溫或高溫、黑暗及低營養水平等幾個主要極端環境,長期以來一直被認為是一片“荒蕪的沙漠”。20世紀中期,深海測量技術發現深海洋底也有高山峻嶺,全世界有8萬公里長的山脊蜿蜒在各個大洋,大洋中山脊的發現使人們認識到海洋環境與陸地環境的統一性。1977年美國“阿爾文”號深潛器最早在太平洋上的加拉帕戈斯群島附近2500米的深海熱液區發現了完全不依賴于光合作用而獨立生存的獨立生命體系。位于生命體系金字塔底部的是微生物,能直接利用深海火山口噴出的硫化物、氮化物、甲烷等低分子化合物作為食物和能源,合成各種生物大分子如蛋白質、糖等。位于金字塔上部的是一些大型生物包括長管蟲、蠕蟲、蛤類、貽貝類,還有蟹類、水母、藤壺等特殊的生物群落。有人將這樣五彩繽紛、生機勃勃的海底生物世界稱為海底“生命綠洲”。目前已經有幾十個深海熱液區生物體系被研究,這種依靠地球內源能量支持,在深海黑暗和高溫的環境下,通過化合作用生產有機質的“黑暗食物鏈”的發現使人類對深海環境以及生物圈有了更進一步的了解。在目前已發現的各種極端環境中深海蘊藏著的生物資源極為豐富,其中最主要的是深海微生物,但這些微生物大部分還鮮為人知。深海環境下極端微生物的研究不僅是目前生命科學最前沿的領域之一,也是海底深部生物圈研究和海底流體活動研究重要的組成部分。該項研究將回答生命起源、生物進化、外太空生命探索等生命科學的重大問題并帶動包括21世紀地球科學內的其它學科領域的重大發展。2001年美國國家科學基金(NSF)在其題為“OceanScienceattheNewMillenium”的科學發展展望報告中,將海底流體活動研究列為海洋科學今后十年最重要、最有可能取得重大突破和科學發現的前沿研究方向之一,生命科學與海底地球物理、地球化學等在上述研究中將占據重要地位。于2003年10月份開始的整合大洋鉆探計劃(IODP)將深部生物圈和洋底、海底列為該計劃中三大科學課題之一。深海深部生物圈的發現是對“生物圈”廣泛范圍的進一步了解。雖然海底采集沉積柱狀樣已經有近80年的歷史,大規模的系統研究開始于1968年的深海鉆探計劃。“深海鉆探(DSDP,1968~1983)”、“大洋鉆探(ODP,1985~2003)”和“綜合大洋鉆探(IODP,2003~至今)”等深海研究的三部曲,是國際地球科學歷時最長、規模最大,也是成績最為突出的合作研究計劃。大洋鉆探計劃ODP以獨特的視角為我們呈現出另外一個生命世界――掩埋在洋底沉積物中和地殼中的生物圈。在數千米深海海底存在著由微小的原核生物組成,數量極大的生物群,有人估計其生物量相當全球地表生物總量的1/10。與熱液口“自養”的微生物不同,深部生物圈的原核生物依靠地層里的有機物實行“異養”。深海大洋中生物圈的發現,讓人類認識到地球生態系統的真正基礎在于原核生物。正是這些原核生物多種多樣的新陳代謝過程,產生了多種多樣生物地球化學效果,在此基礎上建立了地球的生態系統。微生物總是出現在它們能夠生存的一切物理、化學、地質環境中,這似乎是一條基本規律。那些在極端環境中生長并通常需要這種極端環境正常生長的微生物被統稱為極端微生物。極端環境涵蓋了物理極端環境(如溫度、輻射、壓力、磁場、空間、時間等)、化學極端(如干燥、鹽度、酸堿度、重金屬濃度、氧化還原電位等)和生物極端(如營養、種群密度、生物鏈因素等),海底被認為是上述極端環境中的極端。在深海環境中廣泛存在著嗜酸(pH3以下)、嗜堿(pH10以上)、嗜鹽(25mol/L以上)、嗜冷(可達0℃以下)、嗜熱(120℃以上)、嗜壓(500大氣壓以上)微生物。深海環境下極端生物特征的研究也為生命極限的研究提供了良好的生物材料并對外太空生命探索不斷提供新的線索和依據。科學家們設想:既然在如此嚴酷的極端環境下微生物還能很好地生存,那么在火星上也會有生命存在。深海微生物學的建立應該追溯到上世紀70年代,美國Scripps海洋研究所Yayanos教授設計、改進高壓培養罐并于1979年首先分離出深海嗜壓菌,1989年Bartlett首先分離出壓力調控的外膜蛋白(OmpH)。1990年日本三菱重工和三洋公司開始為日本海洋科學技術中心研制深海微生物高溫/高壓培養系統,1994年才完成,耗資七億五千萬日元。該系統的建設和深潛、采樣系統的建設極大地推動了深海生物圈的研究進步。1995年Kato等分析了一個壓力調控基因簇,1999年Nogi等從馬里亞納海溝分離、鑒定出極端嗜壓菌Moritellayayanosii[1~3];2003年日本、美國和意大利相繼展開了深海嗜壓菌ShewanellaviolaceaDSS12和PhotobacteriumprofundumSS9全基因組測序[4,5];2005年3月P.profundumSS9全基因組序列及初步分析在Science上發表[6,7]。除了巨大的科學研究價值,深海微生物研究還具有極大的經濟、社會價值而引起廣泛的關注。深海生物處于獨特的物理、化學和生態環境中,在高靜水壓、劇變的溫度梯度、極微弱的光照條件和高濃度的有毒物質包圍下,它們形成了極為特殊的生物結構、代謝機制系統。由于這種極端的環境,深海生物體內的各種活性物質,特別是酶,具有高度的溫度耐受性,高度的耐酸堿性、耐鹽性及很強的抗毒能力。這些特殊的生物活性物質是深海生物資源中最具應用價值的部分。除了發展、改進海洋微生物的分離培養方法獲得新的海洋微生物,篩選活性物質外,應用基因組學研究方法,構建海洋微生物基因組文庫,通過研究,操作海洋微生物遺傳基因,來獲得新的海洋微生物活性物質,這是探索海洋特別是深海微生物資源,研究開發海洋新藥物的必然而有效的選擇,也是目前深海微生物資源開發的熱點。概括來說,深海生物在以下幾個方面具有潛在的應用價值:

1工業應用

工業生產常常要求一些特殊的反應溫度、酸堿度并加入一些有機溶劑,在這種條件下,普通酶無法保持活性,因此,依賴酶的工業必須花費大量資金采取特殊的工藝以保持這些酶的活性,從而大大提高了成本,而極端酶在普通酶失活的條件下仍然能保持較高的活性,所以在工業上有著廣泛的的應用前景。目前已經有高溫聚合酶、糖酶、淀粉酶、蛋白酶等幾種極端酶開始工業化生產,并且已經創造了數十億美元的經濟效益。

2醫藥應用

從生物體內研制藥物治療人類的各種疾病由來已久。由于越來越多的病原菌或病毒對目前的藥物產生了抗藥性,并且不斷產生新的疾病。因此從海洋中篩選新的生物藥物成為海洋藥物研究開發的方向。深海生物由于環境的獨特性而成為新型特效藥物、抗腫瘤、抗病毒、降壓降脂等藥物的來源。目前國際上在深海藥物的篩選方面還未見太多報道,但是可以預料它的前景將是十分廣闊的。

3環境保護

在海底,由于動物尸體聚集、火山噴發等原因造成有毒物質及硫化物等對陸地生物有害物質的濃度較高,而生存在這里的微生物能分解這些物質并以其為能源繁衍生息,因此,這些生物在清除地球表面的重金屬、石油等污染物方面具有重要的應用價值。目前日本科學家已經從深海中篩選到具有較高的石油分解能力的菌株,并已開展了應用研究。從20世紀后期開始,隨著深海技術能力的提高,越來越多的國家投身于深海研究的前沿領域。目前的深海載人潛器下潛深度達到6500m,無人纜控潛器ROV則可達到11000m水深,并獲得最深處馬里亞納海溝深海沉積物樣本,研究發現其微生物含量達到103~104/g的水平。實驗室深海環境模擬也取得突破進展,已分離鑒定出嗜壓、嗜堿、嗜酸、嗜鹽、嗜冷、嗜熱等極端微生物。目前國際上進行深海微生物研究的國家主要分布在歐洲,美洲及亞洲,其中美國、日本、德國和法國都是深海微生物研究的主力軍。目前,在深海微生物的分離培養、多樣性調查、功能基因研究和適應性機制研究(如深海嗜壓菌的嗜壓機制)等方面取得了一定的進展;各類極端微生物在工業用酶、工具酶、環境修復以及生物活性物質等方面的開發應用也有了突破,使人們看到了深海微生物開發的巨大潛力和廣闊的應用前景。深海生物資源尤其是微生物資源越來越得到人類的重視。隨著科學的發展進步,水下工程技術和探測技術的改進和完善,人類對深海微生物的研究和開發有了更大的空間和可能性。我國深海生物基因的系統研究起步時間較晚,從本世紀初開始主要得到了國家科技部和中國大洋專項的資助。中國大洋協會依托國家海洋局第三海洋研究所成立了中國大洋生物基因研究開發基地,研制、配備了一批船載和實驗室深海微生物培養專用設備。在深海設備的支持下,真正意義的深海微生物研究得以開展。到目前為止,基礎研究主要開展了深海微生物在物質循環中的作用;極端微生物分離、培養;微生物遺傳、代謝研究,深海極端環境下微生物適應性機理的研究等。成功分離、鑒定出各類深海嗜壓、嗜熱、嗜冷、嗜鹽、嗜堿、嗜酸微生物,從中發現了多個未經報道的新種。以此為基礎,正在建設國內第一個深海微生物菌株資源庫。克隆了多種深海極端酶基因,進行了基因表達和分析。深海微生物抗菌、抗腫瘤活性物質篩選工作也已經開展。深海耐壓菌ShewanellacomraWP3已基本完成全基因組序列測定,正在開展后基因組研究。開展了深海沉積物宏基因組文庫的構建,成功構建了一個深海5000米水深沉積物的cosmid基因文庫,通過對克隆子的分析發現文庫中微生物來源主要是一些不可培養的微生物新種,部分克隆子序列測定發現克隆子上大部分基因是新基因。目前已篩選到多個能表達生物活性物質的克隆子,正在進行序列測定。總之,深海生物研究是一個依賴于工程技術的高投入項目,我國深海生物基因資源開發利用研究的快速發展還需要更多資金和人才的不斷投入。

參考文獻

[1]IshiiA,NakasoneK,SatoT,WachiM,etal.IsolationandcharacterizationofthedcwclusterfromthepiezophilicdeepseabacteriumShewanellaviolacea[J].JBiochem,2002,132(2):183

[2]HorikoshiK,Tsujii.Extremophilesindeepseaenvironments[M].Tokyo:SpringerVerlag,1999:91

[3]KatoC,NogiY.CorrelationbetweenphylogeneticstructureandfunctionexamplesfromdeepseaShewanella[J].FEMSMicrobiolEcol.,2001,35(3):223

[4]BidleKA,BartlettDH.RNAarbitrarilyprimedPCRsurveyofgenesregulatedbyToxRindeepseabacteriumPhotobacteriumprofundumstrainSS9[J].JBacteriol,2001,183(5):1688

[5]NakasoneK,IkegamiA,KatoC,etal.AnalysisofciselementsupstreamofthepressureregulatedoperoninthedeepseabarophilicbacteriumShewanellaviolaceastrainDSS12[J].FEMSMicrobiolLett,1999,176:351

[6]VezziA,CampanaroS,D′AngeloM,etal.Lifeatdepth:Photobacteriumprofundumgenomesequenceandexpressionanalysis[J].Science,2005,307(5714):1459

[7]CampanaroS.VezziA,D′AngeloM,etal.LaterallytransferredelementsandhighpressureadaptioninPhotobacteriumprofundumstrains[J].BMCGenomics,2005,6:122

[8]VetrianiC,JannaschHW,MacgregorBJ,etal.Populationstructureandphylogeneticcharacterizationofmarinebenthicarchaeaindeepseasediments[J].ApplEnvironMicrobiol,1999,65(10):4375

[9]PriestFG,GoodfellowM.Appliedmicrobialsystematics[M].Dordrecht:KluwerAcademicPublishers,2000

[10]ReysenbachAL,VoytekM,MancinelliR.Thermophilesbiodiversity,ecology,andevolution[M].NewYork:KluwerAcademic/PlenumPublishers,2001

[11]BullAT,WardAandGoodfellowM.Searchanddiscoverystrategiesforbiotechnology:theparadigmshift[J].MicrobiolMolBiolRev,2000,64(3):573

[12]AkerleyBJ,RubinEJ,CamilliA,etal.Systematicidentificationofessentialgenesbyinvitromarinermutagenesis[J].ProcNatlAcadSciUSA,95(15):8927

[13]BernanVS,GreensteinMandMaieseWM.Marinemicroorganismsasasourceofnewnaturalproducts[J].AdvApplMicrobiol,1997,43:57

[14]StoreyKB,StoreyJ.Environmentalstressorsandgeneresponses[M].ElsevierScienceB.V.2000:277

[15]AbeF,KatoC,HorikoshiK.Pressureregulatedmetabolisminmicroorganisms[J].TrendsMicrobiol,1999,7(11):447

[16]YamadaM,NakasoneK,TamegaiH,etal.PressureregulationofsolublecytochromescinadeepSeapiezophilicbacterium,Shewanellaviolacea[J].JBacteriol,2000,182(10):2945

[17]KatoC,QureshiMH.Pressureresponseindeepseapiezophilicbacteria[J].JMolMicrobiolBiotechnol,1999,1(1):87

[18]LiS,XiaoX,LuoJ,etal.IdentificationofgenesregulatedbychangingsalinityinthedeepseabacteriumShewanellasp.WP3usingRNAarbitrarilyprimedPCR[J].Extremophiles,2005,publishedonline

[19]WangF,WangP,ChenM,etal.IsolationofextremophileswiththedetectionandretrievalofShewanellastrainsindeepseasedimentsfromthewestPacific[J].Extremophiles,2004,8(2):165

[20]WangP,WangF,XuM,etal.MolecularphylogenyofmethylotrophsinadeepseasedimentfromatropicalwestPacificwarmPool[J].FEMSMicrobiolEcol.,2004,47:77