金屬材料論文范文10篇
時間:2024-05-02 22:05:08
導語:這里是公務員之家根據多年的文秘經驗,為你推薦的十篇金屬材料論文范文,還可以咨詢客服老師獲取更多原創文章,歡迎參考。
納米金屬材料分析論文
1引言
40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度(晶粒或晶疇直徑或薄膜厚度)達到某種特征長度時(如電子波長、平均自由程、共格長度、相關長度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認為,如果能夠合成出晶粒尺寸在納米量級的多晶體,即主要由非共格界面構成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構成],其結構將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來,人們又將晶體區域或其它特征長度在納米量級范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結構材料"(nanostructuredmaterials)。由于其獨特的微結構和奇異性能,納米材料引起了科學界的極大關注,成為世界范圍內的研究熱點,其領域涉及物理、化學、生物、微電子等諸多學科。目前,廣義的納米材料的主要包括:
l)清潔或涂層表面的金屬、半導體或聚合物薄膜;2)人造超晶格和量子講結構;功半結晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價鍵或分子組元構成的納米復合材料。
經過最近十多年的研究與探索,現已在納米材料制備方法、結構表征、物理和化學性能、實用化等方面取得顯著進展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學與工程的角度,介紹與評述納米金屬材料的某些研究進展。
2納米材料的制備與合成
材料的納米結構化可以通過多種制備途徑來實現。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預先制備的孤立納米顆粒因結成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產生相或結構轉變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機械球磨、嚴重塑性形變、滑動磨損、高能粒子輻照和火花蝕刻等。目前,關于制備科學的研究主要集中于兩個方面:l)納米粉末制備技術、理論機制和模型。目的是改進納米材料的品質和產量;2)納米粉末的固結技術。以獲得密度和微結構可控的塊體材料或表面覆層。
納米金屬材料進展論文
1引言
40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度(晶?;蚓М犞睆交虮∧ず穸龋┻_到某種特征長度時(如電子波長、平均自由程、共格長度、相關長度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認為,如果能夠合成出晶粒尺寸在納米量級的多晶體,即主要由非共格界面構成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構成],其結構將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來,人們又將晶體區域或其它特征長度在納米量級范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結構材料"(nanostructuredmaterials)。由于其獨特的微結構和奇異性能,納米材料引起了科學界的極大關注,成為世界范圍內的研究熱點,其領域涉及物理、化學、生物、微電子等諸多學科。目前,廣義的納米材料的主要包括:
l)清潔或涂層表面的金屬、半導體或聚合物薄膜;2)人造超晶格和量子講結構;功半結晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價鍵或分子組元構成的納米復合材料。
經過最近十多年的研究與探索,現已在納米材料制備方法、結構表征、物理和化學性能、實用化等方面取得顯著進展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學與工程的角度,介紹與評述納米金屬材料的某些研究進展。
2納米材料的制備與合成
材料的納米結構化可以通過多種制備途徑來實現。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預先制備的孤立納米顆粒因結成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產生相或結構轉變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機械球磨、嚴重塑性形變、滑動磨損、高能粒子輻照和火花蝕刻等。目前,關于制備科學的研究主要集中于兩個方面:l)納米粉末制備技術、理論機制和模型。目的是改進納米材料的品質和產量;2)納米粉末的固結技術。以獲得密度和微結構可控的塊體材料或表面覆層。
納米金屬材料發展論文
1引言
40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度(晶粒或晶疇直徑或薄膜厚度)達到某種特征長度時(如電子波長、平均自由程、共格長度、相關長度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認為,如果能夠合成出晶粒尺寸在納米量級的多晶體,即主要由非共格界面構成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構成],其結構將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來,人們又將晶體區域或其它特征長度在納米量級范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結構材料"(nanostructuredmaterials)。由于其獨特的微結構和奇異性能,納米材料引起了科學界的極大關注,成為世界范圍內的研究熱點,其領域涉及物理、化學、生物、微電子等諸多學科。目前,廣義的納米材料的主要包括:
l)清潔或涂層表面的金屬、半導體或聚合物薄膜;2)人造超晶格和量子講結構;功半結晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價鍵或分子組元構成的納米復合材料。
經過最近十多年的研究與探索,現已在納米材料制備方法、結構表征、物理和化學性能、實用化等方面取得顯著進展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學與工程的角度,介紹與評述納米金屬材料的某些研究進展。
2納米材料的制備與合成
材料的納米結構化可以通過多種制備途徑來實現。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預先制備的孤立納米顆粒因結成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產生相或結構轉變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機械球磨、嚴重塑性形變、滑動磨損、高能粒子輻照和火花蝕刻等。目前,關于制備科學的研究主要集中于兩個方面:l)納米粉末制備技術、理論機制和模型。目的是改進納米材料的品質和產量;2)納米粉末的固結技術。以獲得密度和微結構可控的塊體材料或表面覆層。
納米金屬材料研究論文
1引言
40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度(晶粒或晶疇直徑或薄膜厚度)達到某種特征長度時(如電子波長、平均自由程、共格長度、相關長度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認為,如果能夠合成出晶粒尺寸在納米量級的多晶體,即主要由非共格界面構成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構成],其結構將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來,人們又將晶體區域或其它特征長度在納米量級范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結構材料"(nanostructuredmaterials)。由于其獨特的微結構和奇異性能,納米材料引起了科學界的極大關注,成為世界范圍內的研究熱點,其領域涉及物理、化學、生物、微電子等諸多學科。目前,廣義的納米材料的主要包括:
l)清潔或涂層表面的金屬、半導體或聚合物薄膜;2)人造超晶格和量子講結構;功半結晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價鍵或分子組元構成的納米復合材料。
經過最近十多年的研究與探索,現已在納米材料制備方法、結構表征、物理和化學性能、實用化等方面取得顯著進展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學與工程的角度,介紹與評述納米金屬材料的某些研究進展。
2納米材料的制備與合成
材料的納米結構化可以通過多種制備途徑來實現。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預先制備的孤立納米顆粒因結成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產生相或結構轉變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機械球磨、嚴重塑性形變、滑動磨損、高能粒子輻照和火花蝕刻等。目前,關于制備科學的研究主要集中于兩個方面:l)納米粉末制備技術、理論機制和模型。目的是改進納米材料的品質和產量;2)納米粉末的固結技術。以獲得密度和微結構可控的塊體材料或表面覆層。
納米金屬材料挑戰論文
1引言
40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度(晶?;蚓М犞睆交虮∧ず穸龋┻_到某種特征長度時(如電子波長、平均自由程、共格長度、相關長度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認為,如果能夠合成出晶粒尺寸在納米量級的多晶體,即主要由非共格界面構成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構成],其結構將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來,人們又將晶體區域或其它特征長度在納米量級范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結構材料"(nanostructuredmaterials)。由于其獨特的微結構和奇異性能,納米材料引起了科學界的極大關注,成為世界范圍內的研究熱點,其領域涉及物理、化學、生物、微電子等諸多學科。目前,廣義的納米材料的主要?ǎ?BR>l)清潔或涂層表面的金屬、半導體或聚合物薄膜;2)人造超晶格和量子講結構;功半結晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價鍵或分子組元構成的納米復合材料。
經過最近十多年的研究與探索,現已在納米材料制備方法、結構表征、物理和化學性能、實用化等方面取得顯著進展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學與工程的角度,介紹與評述納米金屬材料的某些研究進展。
2納米材料的制備與合成
材料的納米結構化可以通過多種制備途徑來實現。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預先制備的孤立納米顆粒因結成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產生相或結構轉變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機械球磨、嚴重塑性形變、滑動磨損、高能粒子輻照和火花蝕刻等。目前,關于制備科學的研究主要集中于兩個方面:l)納米粉末制備技術、理論機制和模型。目的是改進納米材料的品質和產量;2)納米粉末的固結技術。以獲得密度和微結構可控的塊體材料或表面覆層。
3納米材料的奇異性能
納米金屬材料發展研究進展論文
1引言
40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度(晶?;蚓М犞睆交虮∧ず穸龋┻_到某種特征長度時(如電子波長、平均自由程、共格長度、相關長度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認為,如果能夠合成出晶粒尺寸在納米量級的多晶體,即主要由非共格界面構成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構成],其結構將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來,人們又將晶體區域或其它特征長度在納米量級范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結構材料"(nanostructuredmaterials)。由于其獨特的微結構和奇異性能,納米材料引起了科學界的極大關注,成為世界范圍內的研究熱點,其領域涉及物理、化學、生物、微電子等諸多學科。目前,廣義的納米材料的主要?ǎ?BR>l)清潔或涂層表面的金屬、半導體或聚合物薄膜;2)人造超晶格和量子講結構;功半結晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價鍵或分子組元構成的納米復合材料。
經過最近十多年的研究與探索,現已在納米材料制備方法、結構表征、物理和化學性能、實用化等方面取得顯著進展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學與工程的角度,介紹與評述納米金屬材料的某些研究進展。
2納米材料的制備與合成
材料的納米結構化可以通過多種制備途徑來實現。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預先制備的孤立納米顆粒因結成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產生相或結構轉變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機械球磨、嚴重塑性形變、滑動磨損、高能粒子輻照和火花蝕刻等。目前,關于制備科學的研究主要集中于兩個方面:l)納米粉末制備技術、理論機制和模型。目的是改進納米材料的品質和產量;2)納米粉末的固結技術。以獲得密度和微結構可控的塊體材料或表面覆層。
3納米材料的奇異性能
納米金屬材料管理論文
1引言
40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度(晶粒或晶疇直徑或薄膜厚度)達到某種特征長度時(如電子波長、平均自由程、共格長度、相關長度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認為,如果能夠合成出晶粒尺寸在納米量級的多晶體,即主要由非共格界面構成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構成],其結構將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來,人們又將晶體區域或其它特征長度在納米量級范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結構材料"(nanostructuredmaterials)。由于其獨特的微結構和奇異性能,納米材料引起了科學界的極大關注,成為世界范圍內的研究熱點,其領域涉及物理、化學、生物、微電子等諸多學科。目前,廣義的納米材料的主要?ǎ?BR>l)清潔或涂層表面的金屬、半導體或聚合物薄膜;2)人造超晶格和量子講結構;功半結晶聚合物和聚合物混和物;4)納米晶體和納米玻璃材料;5)金屬鍵、共價鍵或分子組元構成的納米復合材料。
經過最近十多年的研究與探索,現已在納米材料制備方法、結構表征、物理和化學性能、實用化等方面取得顯著進展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學與工程的角度,介紹與評述納米金屬材料的某些研究進展。
2納米材料的制備與合成
材料的納米結構化可以通過多種制備途徑來實現。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預先制備的孤立納米顆粒因結成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產生相或結構轉變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機械球磨、嚴重塑性形變、滑動磨損、高能粒子輻照和火花蝕刻等。目前,關于制備科學的研究主要集中于兩個方面:l)納米粉末制備技術、理論機制和模型。目的是改進納米材料的品質和產量;2)納米粉末的固結技術。以獲得密度和微結構可控的塊體材料或表面覆層。
3納米材料的奇異性能
接地網金屬材料分析論文
摘要:研究經濟有效的耐蝕接地網金屬材料對于提高電網工作穩定性有重要意義。用電化學測試方法及電解試驗方法在實驗室進行了金屬材料耐蝕性能篩選試驗,并在變電站現場進行了小型埋置試驗。試驗結果表明,金屬材料CL2的耐蝕性能比普通碳鋼高5~7倍,這對于延長接地網使用壽命具有重要意義;鍍鋅鋼作為接地材料對于延長接地網使用壽命實際作用不太顯著。
關鍵詞:接地網;耐蝕金屬材料;電化學測試
1引言
變電站容量的擴大對接地網安全運行的要求更為嚴格,對接地體的熱穩定性的要求更高。在我國,由于資源、經濟等原因,接地網所用的材質主要為普通碳鋼。接地網腐蝕通常呈現局部腐蝕形態,發生腐蝕后接地網碳鋼材料變脆、起層、松散,甚至發生斷裂。某鹽堿性土壤變電站現場與接地網連接的普通碳鋼試片埋置2年后的表面情況。一般性土壤變電站現場與接地網連接的普通碳鋼試片埋置226天后的表面情況。無論在鹽堿性土壤中還是在一般性土壤中,接地網的碳鋼試片腐蝕是非常嚴重的,其表面有許多局部腐蝕坑,試片邊緣也不完整。
腐蝕是導致接地體事故擴大的一個主要原因。因為對于運行多年的接地網而言,由于腐蝕性土壤環境中的電化學腐蝕以及電網設備等運行中的泄流造成的腐蝕使得接地體截面減小,甚至斷裂,造成接地性能不良,不能滿足熱穩定性的要求,因而電路電流將會燒壞接地網,使得變電站內出現高電位差,造成其它主設備的毀壞事故,還會危及人身安全。由于接地網埋設在地下,一旦腐蝕嚴重到使接地網的接地電阻不合格,甚至局部斷裂時,對接地網的翻修改造是相當費勁和困難的,費用也是巨大的。因此防止接地網腐蝕,保證接地性能的穩定性,延長接地網的使用壽命,是電力系統安全經濟生產所迫切需要解決的課題。
對于接地網防腐蝕的研究,目前國內主要有兩條路線[1],一是研制耐蝕性能優良而且經濟性好的導電材料以取代目前普遍使用的碳鋼;二是采用電化學保護技術以減緩正在服役的接地網的腐蝕速度,延長使用壽命。原武漢水利電力大學“接地網防蝕研究及應用”課題組經過長期大量的試驗,已經篩選出耐蝕性能優良且價格合理的材料,可以取代目前廣泛使用的普通碳鋼。
無機非金屬材料實踐教學體系研究
摘要:在高等工程教育中,實踐教學是不可或缺的環節。無機非金屬材料工程專業實踐教學體系是高等教育中培養應用型人才中的重要環節,在其構建過程中,要按照工科的發展特點與規律,優化實踐內容與實習體系,著重于培養學生的工程能力與創新能力,進行系統化的構建設計。
關鍵詞:無機非金屬材料;實踐教學體系;構建
實踐教學體系在高等工程教育中十分重要,是高等教育培養應用型人才的關鍵部分,高校應當重視學生工程實踐能力的培養。隨著無機非金屬材料應用越來越廣泛,高等工程教育逐漸注重起這方面的應用型人才的培養,開設了一系列無機非金屬材料的實踐課程,為培養無機非金屬材料的應用型人才做出巨大貢獻。
1無機非金屬材料工程專業實踐教學體系現狀
隨著無機非金屬材料在國民經濟發展中占比越來越大,諸多高校紛紛開設了無機非金屬材料的教學課程,為培養這方面的人才提供了良好的基礎。然而,當前工程教育普遍存在著一個問題,就是教育以傳授知識為主,缺乏工程實踐,使學生在工程實踐能力、工程素質以及創新創業能力上嚴重缺乏,主要表現為:第一,重理論,輕實踐。在當前的大部分無機非金屬材料的教學中,教學課程的安排多以實驗演示為主,學生動手實踐環節較少。設計課程安排不足,對學生工程能力的培養也不足,導致學生實際工程能力差。由于缺乏實踐因此在創新實踐教學上表現大打折扣,學生缺乏創新實踐能力。第二,實習效果不佳。在無機非金屬材料教育專業中,實習是非常重要的階段,然而在實習時經常會出現擔心學生能力不足而導致影響生產或者承擔安全責任導致學生不能真正參與到實踐中去,除此之外學校在于地方企業合作時在學生實習的落實上也有所缺乏,加上學校的實習經費缺乏,使學生實際實習時間縮短,實習效果不佳。第三,教師素質問題。近年來諸多高校為了科學研究以及教學體系的構建,引進了一批高學歷的年輕教師,然而其缺乏無機非金屬材料的工程實踐經驗,在實踐教學的操作不足,導致其在教學時偏向理論化。
2無機非金屬材料工程專業實踐教學體系構建