梯度功能材料研究論文
時間:2022-09-10 08:47:00
導(dǎo)語:梯度功能材料研究論文一文來源于網(wǎng)友上傳,不代表本站觀點,若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。
摘要:本文介紹了梯度功能材料(functionallygradedmaterials簡寫為FGM)的基本概念、分類、性質(zhì)和制備方法的基本原理,綜述了國內(nèi)外FGM的研究和應(yīng)用現(xiàn)狀,提出了FGM在應(yīng)用方面尚需解決的一些問題,并展望了梯度功能材料的發(fā)展前景與方向。
關(guān)鍵詞:梯度功能材料,復(fù)合材料,研究進(jìn)展
Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.
Keywords:FGM;composite;theAdvance
0引言
信息、能源、材料是現(xiàn)代科學(xué)技術(shù)和社會發(fā)展的三大支柱。現(xiàn)代高科技的競爭在很大程度上依賴于材料科學(xué)的發(fā)展。對材料,特別是對高性能材料的認(rèn)識水平、掌握和應(yīng)用能力,直接體現(xiàn)國家的科學(xué)技術(shù)水平和經(jīng)濟(jì)實力,也是一個國家綜合國力和社會文明進(jìn)步速度的標(biāo)志。因此,新材料的開發(fā)與研究是材料科學(xué)發(fā)展的先導(dǎo),是21世紀(jì)高科技領(lǐng)域的基石。
近年來,材料科學(xué)獲得了突飛猛進(jìn)的發(fā)展。究其原因,一方面是各個學(xué)科的交叉滲透引入了新理論、新方法及新的實驗技術(shù);另一方面是實際應(yīng)用的迫切需要對材料提出了新的要求。而FGM即是為解決實際生產(chǎn)應(yīng)用問題而產(chǎn)生的一種新型復(fù)合材料,這種材料對新一代航天飛行器突破“小型化”,“輕質(zhì)化”,“高性能化”和“多功能化”具有舉足輕重的作用,并且它也可廣泛用于其它領(lǐng)域,所以它是近年來在材料科學(xué)中涌現(xiàn)出的研究熱點之一。
1FGM概念的提出
當(dāng)代航天飛機(jī)等高新技術(shù)的發(fā)展,對材料性能的要求越來越苛刻。例如:當(dāng)航天飛機(jī)往返大氣層,飛行速度超過25個馬赫數(shù),其表面溫度高達(dá)2000℃。而其燃燒室內(nèi)燃燒氣體溫度可超過2000℃,燃燒室的熱流量大于5MW/m2,其空氣入口的前端熱通量達(dá)5MW/m2.對于如此大的熱量必須采取冷卻措施,一般將用作燃料的液氫作為強(qiáng)制冷卻的冷卻劑,此時燃燒室內(nèi)外要承受高達(dá)1000K以上的溫差,傳統(tǒng)的單相均勻材料已無能為力。若采用多相復(fù)合材料,如金屬基陶瓷涂層材料,由于各相的熱脹系數(shù)和熱應(yīng)力的差別較大,很容易在相界處出現(xiàn)涂層剝落或龜裂現(xiàn)象,其關(guān)鍵在于基底和涂層間存在有一個物理性能突變的界面。為解決此類極端條件下常規(guī)耐熱材料的不足,日本學(xué)者新野正之、平井敏雄和渡邊龍三人于1987年首次提出了梯度功能材料的概念,即以連續(xù)變化的組分梯度來代替突變界面,消除物理性能的突變,使熱應(yīng)力降至最小。
隨著研究的不斷深入,梯度功能材料的概念也得到了發(fā)展。目前梯度功能材料(FGM)是指以計算機(jī)輔助材料設(shè)計為基礎(chǔ),采用先進(jìn)復(fù)合技術(shù),使構(gòu)成材料的要素(組成、結(jié)構(gòu))沿厚度方向有一側(cè)向另一側(cè)成連續(xù)變化,從而使材料的性質(zhì)和功能呈梯度變化的新型材料。
2FGM的特性和分類
2.1FGM的特殊性能
由于FGM的材料組分是在一定的空間方向上連續(xù)變化的特點如圖2,因此它能有效地克服傳統(tǒng)復(fù)合材料的不足。正如Erdogan在其論文中指出的與傳統(tǒng)復(fù)合材料相比FGM有如下優(yōu)勢:
1)將FGM用作界面層來連接不相容的兩種材料,可以大大地提高粘結(jié)強(qiáng)度;
2)將FGM用作涂層和界面層可以減小殘余應(yīng)力和熱應(yīng)力;
3)將FGM用作涂層和界面層可以消除連接材料中界面交叉點以及應(yīng)力自由端點的應(yīng)力奇異性;
4)用FGM代替?zhèn)鹘y(tǒng)的均勻材料涂層,既可以增強(qiáng)連接強(qiáng)度也可以減小裂紋驅(qū)動力。
2.2FGM的分類
根據(jù)不同的分類標(biāo)準(zhǔn)FGM有多種分類方式。根據(jù)材料的組合方式,F(xiàn)GM分為金屬/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多種組合方式的材料;根據(jù)其組成變化FGM分為梯度功能整體型(組成從一側(cè)到另一側(cè)呈梯度漸變的結(jié)構(gòu)材料),梯度功能涂敷型(在基體材料上形成組成漸變的涂層),梯度功能連接型(連接兩個基體間的界面層呈梯度變化);根據(jù)不同的梯度性質(zhì)變化分為密度FGM,成分FGM,光學(xué)FGM,精細(xì)FGM等;根據(jù)不同的應(yīng)用領(lǐng)域有可分為耐熱FGM,生物、化學(xué)工程FGM,電子工程FGM等。
3FGM的應(yīng)用
FGM最初是從航天領(lǐng)域發(fā)展起來的。隨著FGM研究的不斷深入,人們發(fā)現(xiàn)利用組分、結(jié)構(gòu)、性能梯度的變化,可制備出具有聲、光、電、磁等特性的FGM,并可望應(yīng)用于許多領(lǐng)域。
功能
應(yīng)用領(lǐng)域材料組合
緩和熱應(yīng)
力功能及
結(jié)合功能
航天飛機(jī)的超耐熱材料
陶瓷引擎
耐磨耗損性機(jī)械部件
耐熱性機(jī)械部件
耐蝕性機(jī)械部件
加工工具
運動用具:建材陶瓷金屬
陶瓷金屬
塑料金屬
異種金屬
異種陶瓷
金剛石金屬
碳纖維金屬塑料
核功能
原子爐構(gòu)造材料
核融合爐內(nèi)壁材料
放射性遮避材料輕元素高強(qiáng)度材料
耐熱材料遮避材料
耐熱材料遮避材料
生物相溶性
及醫(yī)學(xué)功能
人工牙齒牙根
人工骨
人工關(guān)節(jié)
人工內(nèi)臟器官:人工血管
補(bǔ)助感覺器官
生命科學(xué)磷灰石氧化鋁
磷灰石金屬
磷灰石塑料
異種塑料
硅芯片塑料
電磁功能
電磁功能陶瓷過濾器
超聲波振動子
IC
磁盤
磁頭
電磁鐵
長壽命加熱器
超導(dǎo)材料
電磁屏避材料
高密度封裝基板壓電陶瓷塑料
壓電陶瓷塑料
硅化合物半導(dǎo)體
多層磁性薄膜
金屬鐵磁體
金屬鐵磁體
金屬陶瓷
金屬超導(dǎo)陶瓷
塑料導(dǎo)電性材料
陶瓷陶瓷
光學(xué)功能防反射膜
光纖;透鏡;波選擇器
多色發(fā)光元件
玻璃激光透明材料玻璃
折射率不同的材料
不同的化合物半導(dǎo)體
稀土類元素玻璃
能源轉(zhuǎn)化功能
MHD發(fā)電
電極;池內(nèi)壁
熱電變換發(fā)電
燃料電池
地?zé)岚l(fā)電
太陽電池陶瓷高熔點金屬
金屬陶瓷
金屬硅化物
陶瓷固體電解質(zhì)
金屬陶瓷
電池硅、鍺及其化合物
4FGM的研究
FGM研究內(nèi)容包括材料設(shè)計、材料制備和材料性能評價。
4.1FGM設(shè)計
FGM設(shè)計是一個逆向設(shè)計過程。
首先確定材料的最終結(jié)構(gòu)和應(yīng)用條件,然后從FGM設(shè)計數(shù)據(jù)庫中選擇滿足使用條件的材料組合、過渡組份的性能及微觀結(jié)構(gòu),以及制備和評價方法,最后基于上述結(jié)構(gòu)和材料組合選擇,根據(jù)假定的組成成份分布函數(shù),計算出體系的溫度分布和熱應(yīng)力分布。如果調(diào)整假定的組成成份分布函數(shù),就有可能計算出FGM體系中最佳的溫度分布和熱應(yīng)力分布,此時的組成分布函數(shù)即最佳設(shè)計參數(shù)。
FGM設(shè)計主要構(gòu)成要素有三:
1)確定結(jié)構(gòu)形狀,熱—力學(xué)邊界條件和成分分布函數(shù);
2)確定各種物性數(shù)據(jù)和復(fù)合材料熱物性參數(shù)模型;
3)采用適當(dāng)?shù)臄?shù)學(xué)—力學(xué)計算方法,包括有限元方法計算FGM的應(yīng)力分布,采用通用的和自行開發(fā)的軟件進(jìn)行計算機(jī)輔助設(shè)計。
FGM設(shè)計的特點是與材料的制備工藝緊密結(jié)合,借助于計算機(jī)輔助設(shè)計系統(tǒng),得出最優(yōu)的設(shè)計方案。
4.2FGM的制備
FGM制備研究的主要目標(biāo)是通過合適的手段,實現(xiàn)FGM組成成份、微觀結(jié)構(gòu)能夠按設(shè)計分布,從而實現(xiàn)FGM的設(shè)計性能。可分為粉末致密法:如粉末冶金法(PM),自蔓延高溫合成法(SHS);涂層法:如等離子噴涂法,激光熔覆法,電沉積法,氣相沉積包含物理氣相沉積(PVD)和化學(xué)相沉積(CVD);形變與馬氏體相變[10、14]。
4.2.1粉末冶金法(PM)
PM法是先將原料粉末按設(shè)計的梯度成分成形,然后燒結(jié)。通過控制和調(diào)節(jié)原料粉末的粒度分布和燒結(jié)收縮的均勻性,可獲得熱應(yīng)力緩和的FGM。粉末冶金法可靠性高,適用于制造形狀比較簡單的FGM部件,但工藝比較復(fù)雜,制備的FGM有一定的孔隙率,尺寸受模具限制。常用的燒結(jié)法有常壓燒結(jié)、熱壓燒結(jié)、熱等靜壓燒結(jié)及反應(yīng)燒結(jié)等。這種工藝比較適合制備大體積的材料。PM法具有設(shè)備簡單、易于操作和成本低等優(yōu)點,但要對保溫溫度、保溫時間和冷卻速度進(jìn)行嚴(yán)格控制。國內(nèi)外利用粉末冶金方法已制備出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等。
4.2.2自蔓延燃燒
高溫合成法(Self-propagatingHigh-temperatureSynthesis簡稱SHS或CombustionSynthesis)
SHS法是前蘇聯(lián)科學(xué)家Merzhanov等在1967年研究Ti和B的燃燒反應(yīng)時,發(fā)現(xiàn)的一種合成材料的新技術(shù)。其原理是利用外部能量加熱局部粉體引燃化學(xué)反應(yīng),此后化學(xué)反應(yīng)在自身放熱的支持下,自動持續(xù)地蔓延下去,利用反應(yīng)熱將粉末燒結(jié)成材,最后合成新的化合物。其反應(yīng)示意圖如圖6所示[16]:
SHS法具有產(chǎn)物純度高、效率高、成本低、工藝相對簡單的特點。并且適合制造大尺寸和形狀復(fù)雜的FGM。但SHS法僅適合存在高放熱反應(yīng)的材料體系,金屬與陶瓷的發(fā)熱量差異大,燒結(jié)程度不同,較難控制,因而影響材料的致密度,孔隙率較大,機(jī)械強(qiáng)度較低。目前利用SHS法己制備出Al/TiB2,Cu/TiB2、Ni/TiC、Nb-N、Ti-Al等系功能梯度材料[7、11]。
4.2.3噴涂法
噴涂法主要是指等離子體噴涂工藝,適用于形狀復(fù)雜的材料和部件的制備。通常,將金屬和陶瓷的原料粉末分別通過不同的管道輸送到等離子噴槍內(nèi),并在熔化的狀態(tài)下將它噴鍍在基體的表面上形成梯度功能材料涂層。可以通過計算機(jī)程序控制粉料的輸送速度和流量來得到設(shè)計所要求的梯度分布函數(shù)。這種工藝已經(jīng)被廣泛地用來制備耐熱合金發(fā)動機(jī)葉片的熱障涂層上,其成分是部分穩(wěn)定氧化鋯(PSZ)陶瓷和NiCrAlY合金[9]。
4.2.3.1等離子噴涂法(PS)
PS法的原理是等離子氣體被電子加熱離解成電子和離子的平衡混合物,形成等離子體,其溫度高達(dá)1500K,同時處于高度壓縮狀態(tài),所具有的能量極大。等離子體通過噴嘴時急劇膨脹形成亞音速或超音速的等離子流,速度可高達(dá)1.5km/s。原料粉末送至等離子射流中,粉末顆粒被加熱熔化,有時還會與等離子體發(fā)生復(fù)雜的冶金化學(xué)反應(yīng),隨后被霧化成細(xì)小的熔滴,噴射在基底上,快速冷卻固結(jié),形成沉積層。噴涂過程中改變陶瓷與金屬的送粉比例,調(diào)節(jié)等離子射流的溫度及流速,即可調(diào)整成分與組織,獲得梯度涂層[8、11]。該法的優(yōu)點是可以方便的控制粉末成分的組成,沉積效率高,無需燒結(jié),不受基體面積大小的限制,比較容易得到大面積的塊材[10],但梯度涂層與基
體間的結(jié)合強(qiáng)度不高,并存在涂層組織不均勻,空洞疏松,表面粗糙等缺陷。采用此法己制備出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料
4.2.3.2激光熔覆法
激光熔覆法是將預(yù)先設(shè)計好組分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便會產(chǎn)生用B合金化的A薄涂層,并焊接到B基底表面上,形成第一包覆層。改變注入粉末的組成配比,在上述覆層熔覆的同時注入,在垂直覆層方向上形成組分的變化。重復(fù)以上過程,就可以獲得任意多層的FGM。用Ti-A1合金熔覆Ti用顆粒陶瓷增強(qiáng)劑熔覆金屬獲得了梯度多層結(jié)構(gòu)。梯度的變化可以通過控制初始涂層A的數(shù)量和厚度,以及熔區(qū)的深度來獲得,熔區(qū)的深度本身由激光的功率和移動速度來控制。該工藝可以顯著改善基體材料表面的耐磨、耐蝕、耐熱及電氣特性和生物活性等性能,但由于激光溫度過高,涂層表面有時會出現(xiàn)裂紋或孔洞,并且陶瓷顆粒與金屬往往發(fā)生化學(xué)反應(yīng)[10]。采用此法可制備Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。
4.2.3.3熱噴射沉積[10]
與等離子噴涂有些相關(guān)的一種工藝是熱噴涂。用這種工藝把先前熔化的金屬射流霧化,并噴涂到基底上凝固,因此,建立起一層快速凝固的材料。通過將增強(qiáng)粒子注射到金屬流束中,這種工藝已被推廣到制造復(fù)合材料中。陶瓷增強(qiáng)顆粒,典型的如SiC或Al2O3,一般保持固態(tài),混入金屬液滴而被涂覆在基底,形成近致密的復(fù)合材料。在噴涂沉積過程中,通過連續(xù)地改變增強(qiáng)顆粒的饋送速率,熱噴涂沉積已被推廣產(chǎn)生梯度6061鋁合金/SiC復(fù)合材料。可以使用熱等靜壓工序以消除梯度復(fù)合材料中的孔隙。
4.2.3.4電沉積法
電沉積法是一種低溫下制備FGM的化學(xué)方法。該法利用電鍍的原理,將所選材料的懸浮液置于兩電極間的外場中,通過注入另一相的懸浮液使之混合,并通過控制鍍液流速、電流密度或粒子濃度,在電場作用下電荷的懸浮顆粒在電極上沉積下來,最后得到FGM膜或材料。所用的基體材料可以是金屬、塑料、陶瓷或玻璃,涂層的主要材料為TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固體基體材料的表面獲得金屬、合金或陶瓷的沉積層,以改變固體材料的表面特性,提高材料表面的耐磨損性、耐腐蝕性或使材料表面具有特殊的電磁功能、光學(xué)功能、熱物理性能,該工藝由于對鍍層材料的物理力學(xué)性能破壞小、設(shè)備簡單、操作方便、成型壓力和溫度低,精度易控制,生產(chǎn)成本低廉等顯著優(yōu)點而備受材料研究者的關(guān)注。但該法只適合于制造薄箔型功能梯度材料。[8、10]
4.2.3.5氣相沉積法
氣相沉積是利用具有活性的氣態(tài)物質(zhì)在基體表面成膜的技術(shù)。通過控制彌散相濃度,在厚度方向上實現(xiàn)組分的梯度化,適合于制備薄膜型及平板型FGM。該法可以制備大尺寸的功能梯度材料,但合成速度低,一般不能制備出大厚度的梯度膜,與基體結(jié)合強(qiáng)度低、設(shè)備比較復(fù)雜。采用此法己制備出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。氣相沉積按機(jī)理的不同分為物理氣相沉積(PVD)和化學(xué)氣相沉積(CVD)兩類。
化學(xué)氣相沉積法(CVD)是將兩相氣相均質(zhì)源輸送到反應(yīng)器中進(jìn)行均勻混合,在熱基板上發(fā)生化學(xué)反應(yīng)并使反映產(chǎn)物沉積在基板上。通過控制反應(yīng)氣體的壓力、組成及反應(yīng)溫度,精確地控制材料的組成、結(jié)構(gòu)和形態(tài),并能使其組成、結(jié)構(gòu)和形態(tài)從一種組分到另一種組分連續(xù)變化,可得到按設(shè)計要求的FGM。另外,該法無須燒結(jié)即可制備出致密而性能優(yōu)異的FGM,因而受到人們的重視。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制備過程包括:氣相反應(yīng)物的形成;氣相反應(yīng)物傳輸?shù)匠练e區(qū)域;固體產(chǎn)物從氣相中沉積與襯底[12]。
物理氣相沉積法(PVD)是通過加熱固相源物質(zhì),使其蒸發(fā)為氣相,然后沉積于基材上,形成約100μm厚度的致密薄膜。加熱金屬的方法有電阻加熱、電子束轟擊、離子濺射等。PVD法的特點是沉積溫度低,對基體熱影響小,但沉積速度慢。日本科技廳金屬材料研究所用該法制備出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]
4.2.4形變與馬氏體相變
通過伴隨的應(yīng)變變化,馬氏體相變能在所選擇的材料中提供一個附加的被稱作“相變塑性”的變形機(jī)制。借助這種機(jī)制在恒溫下形成的馬氏體量隨材料中的應(yīng)力和變形量的增加而增加。因此,在合適的溫度范圍內(nèi),可以通過施加應(yīng)變(或等價應(yīng)力)梯度,在這種材料中產(chǎn)生應(yīng)力誘發(fā)馬氏體體積分?jǐn)?shù)梯度。這一方法在順磁奧氏體18-8不銹鋼(Fe-18%,Cr-8%Ni)試樣內(nèi)部獲得了鐵磁馬氏體α體積分?jǐn)?shù)的連續(xù)變化。這種工藝雖然明顯局限于一定的材料范圍,但能提供一個簡單的方法,可以一步生產(chǎn)含有飽和磁化強(qiáng)度連續(xù)變化的材料,這種材料對于位置測量裝置的制造有潛在的應(yīng)用前景。
4.3FGM的特性評價
功能梯度材料的特征評價是為了進(jìn)一步優(yōu)化成分設(shè)計,為成分設(shè)計數(shù)據(jù)庫提供實驗數(shù)據(jù),目前已開發(fā)出局部熱應(yīng)力試驗評價、熱屏蔽性能評價和熱性能測定、機(jī)械強(qiáng)度測定等四個方面。這些評價技術(shù)還停留在功能梯度材料物性值試驗測定等基礎(chǔ)性的工作上。目前,對熱壓力緩和型的FGM主要就其隔熱性能、熱疲勞功能、耐熱沖擊特性、熱壓力緩和性能以及機(jī)械性能進(jìn)行評價。目前,日本、美國正致力于建立統(tǒng)一的標(biāo)準(zhǔn)特征評價體系[7~8]。
5FGM的研究發(fā)展方向
5.1存在的問題
作為一種新型功能材料,梯度功能材料范圍廣泛,性能特殊,用途各異。尚存在一些問題需要進(jìn)一步的研究和解決,主要表現(xiàn)在以下一些方面[5、13]:
1)梯度材料設(shè)計的數(shù)據(jù)庫(包括材料體系、物性參數(shù)、材料制備和性
當(dāng)前位置:首頁→理工論文→材料工程學(xué)→文章內(nèi)容
梯度功能材料的研究進(jìn)展
減小字體增大字體作者:佚名來源:不詳時間:2008-10-52:02:30
高溫合成法(Self-propagatingHigh-temperatureSynthesis簡稱SHS或CombustionSynthesis)
SHS法是前蘇聯(lián)科學(xué)家Merzhanov等在1967年研究Ti和B的燃燒反應(yīng)時,發(fā)現(xiàn)的一種合成材料的新技術(shù)。其原理是利用外部能量加熱局部粉體引燃化學(xué)反應(yīng),此后化學(xué)反應(yīng)在自身放熱的支持下,自動持續(xù)地蔓延下去,利用反應(yīng)熱將粉末燒結(jié)成材,最后合成新的化合物。其反應(yīng)示意圖如圖6所示[16]:
SHS法具有產(chǎn)物純度高、效率高、成本低、工藝相對簡單的特點。并且適合制造大尺寸和形狀復(fù)雜的FGM。但SHS法僅適合存在高放熱反應(yīng)的材料體系,金屬與陶瓷的發(fā)熱量差異大,燒結(jié)程度不同,較難控制,因而影響材料的致密度,孔隙率較大,機(jī)械強(qiáng)度較低。目前利用SHS法己制備出Al/TiB2,Cu/TiB2、Ni/TiC、Nb-N、Ti-Al等系功能梯度材料[7、11]。
4.2.3噴涂法
噴涂法主要是指等離子體噴涂工藝,適用于形狀復(fù)雜的材料和部件的制備。通常,將金屬和陶瓷的原料粉末分別通過不同的管道輸送到等離子噴槍內(nèi),并在熔化的狀態(tài)下將它噴鍍在基體的表面上形成梯度功能材料涂層。可以通過計算機(jī)程序控制粉料的輸送速度和流量來得到設(shè)計所要求的梯度分布函數(shù)。這種工藝已經(jīng)被廣泛地用來制備耐熱合金發(fā)動機(jī)葉片的熱障涂層上,其成分是部分穩(wěn)定氧化鋯(PSZ)陶瓷和NiCrAlY合金[9]。
4.2.3.1等離子噴涂法(PS)
PS法的原理是等離子氣體被電子加熱離解成電子和離子的平衡混合物,形成等離子體,其溫度高達(dá)1500K,同時處于高度壓縮狀態(tài),所具有的能量極大。等離子體通過噴嘴時急劇膨脹形成亞音速或超音速的等離子流,速度可高達(dá)1.5km/s。原料粉末送至等離子射流中,粉末顆粒被加熱熔化,有時還會與等離子體發(fā)生復(fù)雜的冶金化學(xué)反應(yīng),隨后被霧化成細(xì)小的熔滴,噴射在基底上,快速冷卻固結(jié),形成沉積層。噴涂過程中改變陶瓷與金屬的送粉比例,調(diào)節(jié)等離子射流的溫度及流速,即可調(diào)整成分與組織,獲得梯度涂層[8、11]。該法的優(yōu)點是可以方便的控制粉末成分的組成,沉積效率高,無需燒結(jié),不受基體面積大小的限制,比較容易得到大面積的塊材[10],但梯度涂層與基
體間的結(jié)合強(qiáng)度不高,并存在涂層組織不均勻,空洞疏松,表面粗糙等缺陷。采用此法己制備出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料
4.2.3.2激光熔覆法
激光熔覆法是將預(yù)先設(shè)計好組分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便會產(chǎn)生用B合金化的A薄涂層,并焊接到B基底表面上,形成第一包覆層。改變注入粉末的組成配比,在上述覆層熔覆的同時注入,在垂直覆層方向上形成組分的變化。重復(fù)以上過程,就可以獲得任意多層的FGM。用Ti-A1合金熔覆Ti用顆粒陶瓷增強(qiáng)劑熔覆金屬獲得了梯度多層結(jié)構(gòu)。梯度的變化可以通過控制初始涂層A的數(shù)量和厚度,以及熔區(qū)的深度來獲得,熔區(qū)的深度本身由激光的功率和移動速度來控制。該工藝可以顯著改善基體材料表面的耐磨、耐蝕、耐熱及電氣特性和生物活性等性能,但由于激光溫度過高,涂層表面有時會出現(xiàn)裂紋或孔洞,并且陶瓷顆粒與金屬往往發(fā)生化學(xué)反應(yīng)[10]。采用此法可制備Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。
4.2.3.3熱噴射沉積[10]
與等離子噴涂有些相關(guān)的一種工藝是熱噴涂。用這種工藝把先前熔化的金屬射流霧化,并噴涂到基底上凝固,因此,建立起一層快速凝固的材料。通過將增強(qiáng)粒子注射到金屬流束中,這種工藝已被推廣到制造復(fù)合材料中。陶瓷增強(qiáng)顆粒,典型的如SiC或Al2O3,一般保持固態(tài),混入金屬液滴而被涂覆在基底,形成近致密的復(fù)合材料。在噴涂沉積過程中,通過連續(xù)地改變增強(qiáng)顆粒的饋送速率,熱噴涂沉積已被推廣產(chǎn)生梯度6061鋁合金/SiC復(fù)合材料。可以使用熱等靜壓工序以消除梯度復(fù)合材料中的孔隙。
4.2.3.4電沉積法
電沉積法是一種低溫下制備FGM的化學(xué)方法。該法利用電鍍的原理,將所選材料的懸浮液置于兩電極間的外場中,通過注入另一相的懸浮液使之混合,并通過控制鍍液流速、電流密度或粒子濃度,在電場作用下電荷的懸浮顆粒在電極上沉積下來,最后得到FGM膜或材料。所用的基體材料可以是金屬、塑料、陶瓷或玻璃,涂層的主要材料為TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固體基體材料的表面獲得金屬、合金或陶瓷的沉積層,以改變固體材料的表面特性,提高材料表面的耐磨損性、耐腐蝕性或使材料表面具有特殊的電磁功能、光學(xué)功能、熱物理性能,該工藝由于對鍍層材料的物理力學(xué)性能破壞小、設(shè)備簡單、操作方便、成型壓力和溫度低,精度易控制,生產(chǎn)成本低廉等顯著優(yōu)點而備受材料研究者的關(guān)注。但該法只適合于制造薄箔型功能梯度材料。[8、10]
4.2.3.5氣相沉積法
氣相沉積是利用具有活性的氣態(tài)物質(zhì)在基體表面成膜的技術(shù)。通過控制彌散相濃度,在厚度方向上實現(xiàn)組分的梯度化,適合于制備薄膜型及平板型FGM。該法可以制備大尺寸的功能梯度材料,但合成速度低,一般不能制備出大厚度的梯度膜,與基體結(jié)合強(qiáng)度低、設(shè)備比較復(fù)雜。采用此法己制備出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。氣相沉積按機(jī)理的不同分為物理氣相沉積(PVD)和化學(xué)氣相沉積(CVD)兩類。
化學(xué)氣相沉積法(CVD)是將兩相氣相均質(zhì)源輸送到反應(yīng)器中進(jìn)行均勻混合,在熱基板上發(fā)生化學(xué)反應(yīng)并使反映產(chǎn)物沉積在基板上。通過控制反應(yīng)氣體的壓力、組成及反應(yīng)溫度,精確地控制材料的組成、結(jié)構(gòu)和形態(tài),并能使其組成、結(jié)構(gòu)和形態(tài)從一種組分到另一種組分連續(xù)變化,可得到按設(shè)計要求的FGM。另外,該法無須燒結(jié)即可制備出致密而性能優(yōu)異的FGM,因而受到人們的重視。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制備過程包括:氣相反應(yīng)物的形成;氣相反應(yīng)物傳輸?shù)匠练e區(qū)域;固體產(chǎn)物從氣相中沉積與襯底[12]。
物理氣相沉積法(PVD)是通過加熱固相源物質(zhì),使其蒸發(fā)為氣相,然后沉積于基材上,形成約100μm厚度的致密薄膜。加熱金屬的方法有電阻加熱、電子束轟擊、離子濺射等。PVD法的特點是沉積溫度低,對基體熱影響小,但沉積速度慢。日本科技廳金屬材料研究所用該法制備出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]
4.2.4形變與馬氏體相變
通過伴隨的應(yīng)變變化,馬氏體相變能在所選擇的材料中提供一個附加的被稱作“相變塑性”的變形機(jī)制。借助這種機(jī)制在恒溫下形成的馬氏體量隨材料中的應(yīng)力和變形量的增加而增加。因此,在合適的溫度范圍內(nèi),可以通過施加應(yīng)變(或等價應(yīng)力)梯度,在這種材料中產(chǎn)生應(yīng)力誘發(fā)馬氏體體積分?jǐn)?shù)梯度。這一方法在順磁奧氏體18-8不銹鋼(Fe-18%,Cr-8%Ni)試樣內(nèi)部獲得了鐵磁馬氏體α體積分?jǐn)?shù)的連續(xù)變化。這種工藝雖然明顯局限于一定的材料范圍,但能提供一個簡單的方法,可以一步生產(chǎn)含有飽和磁化強(qiáng)度連續(xù)變化的材料,這種材料對于位置測量裝置的制造有潛在的應(yīng)用前景。
4.3FGM的特性評價
功能梯度材料的特征評價是為了進(jìn)一步優(yōu)化成分設(shè)計,為成分設(shè)計數(shù)據(jù)庫提供實驗數(shù)據(jù),目前已開發(fā)出局部熱應(yīng)力試驗評價、熱屏蔽性能評價和熱性能測定、機(jī)械強(qiáng)度測定等四個方面。這些評價技術(shù)還停留在功能梯度材料物性值試驗測定等基礎(chǔ)性的工作上。目前,對熱壓力緩和型的FGM主要就其隔熱性能、熱疲勞功能、耐熱沖擊特性、熱壓力緩和性能以及機(jī)械性能進(jìn)行評價。目前,日本、美國正致力于建立統(tǒng)一的標(biāo)準(zhǔn)特征評價體系[7~8]。
5FGM的研究發(fā)展方向
5.1存在的問題
作為一種新型功能材料,梯度功能材料范圍廣泛,性能特殊,用途各異。尚存在一些問題需要進(jìn)一步的研究和解決,主要表現(xiàn)在以下一些方面[5、13]:
1)梯度材料設(shè)計的數(shù)據(jù)庫
- 上一篇:材料采購成本管理論文
- 下一篇:鋼熱處理論文