納米涂料范文10篇

時間:2024-02-29 03:28:08

導語:這里是公務員之家根據多年的文秘經驗,為你推薦的十篇納米涂料范文,還可以咨詢客服老師獲取更多原創文章,歡迎參考。

納米涂料

納米涂料發展論文

一、納米的發展歷史

納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質來說,納米是一個很小的單位,不如,人的頭發絲的直徑一般為7000-8000nm,人體紅細胞的直徑一般為3000-5000nm,一般病毒的直徑也在幾十至幾百納米大小,金屬的晶粒尺寸一般在微米量級;對于微觀物質如原子、分子等以前用埃來表示,1埃相當于1個氫原子的直徑,1納米是10埃。一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區別常規尺寸材料的一些特殊物理化學特性。

1959年,著名物理學家、諾貝爾獎獲得者理查德。費曼預言,人類可以用小的機器制作更小的機器,最后實現根據人類意愿逐個排列原子、制造產品,這是關于納米科技最早的夢想。1991年,美國科學家成功地合成了碳納米管,并發現其質量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發現標志人類對材料性能的發掘達到了新的高度。1999年,納米產品的年營業額達到500億美元。

二、納米技術在防腐中的應用

納米涂料必須滿足兩個條件:一是有一相尺寸在1~100nm;二是因為納米相的存在而使涂料的性能有明顯提高或具有新功能。納米涂料性能改善主要包括:第一、施工性能的改善。利用納米粒子粒徑對流變性的影響,如納米SiO2用于建筑涂料,可防止涂料的流掛;第二、耐候性的改善。利用納米粒子對紫外線的吸收性,如利用納米TiO2、SiO2可制得耐候性建筑外墻涂料、汽車面漆等;第三、力學性能的改善。利用納米粒子與樹脂之間強大的界面結合力,可提高涂層的強度、硬度、耐磨性、耐刮傷性等。納米功能性涂料主要有抗菌涂料、界面涂料、隱身涂料、靜電屏蔽涂料、隔熱涂料、大氣凈化涂料、電絕緣涂料、磁性涂料等。

納米技術的應用為涂料工業的發展開辟了一條新途徑,目前用于涂料的納米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于納米粒子的比表面大、表面自由能高,粒子之間極易團聚,納米粒子的這種特性決定了納米涂料不可能象顏料、添料與基料通過簡單的混配得到。同時納米粒子種類很多,性能各異,不是每一種納米粒子和每一粒徑范圍的納米粒子制得的涂料都能達到所期望的性能和功能,需要經過大量的實驗研究工作,才有可能得到真正的納米涂料。

查看全文

納米涂料發展研究論文

一、納米的發展歷史

納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質來說,納米是一個很小的單位,不如,人的頭發絲的直徑一般為7000-8000nm,人體紅細胞的直徑一般為3000-5000nm,一般病毒的直徑也在幾十至幾百納米大小,金屬的晶粒尺寸一般在微米量級;對于微觀物質如原子、分子等以前用埃來表示,1埃相當于1個氫原子的直徑,1納米是10埃。一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區別常規尺寸材料的一些特殊物理化學特性。

1959年,著名物理學家、諾貝爾獎獲得者理查德。費曼預言,人類可以用小的機器制作更小的機器,最后實現根據人類意愿逐個排列原子、制造產品,這是關于納米科技最早的夢想。1991年,美國科學家成功地合成了碳納米管,并發現其質量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發現標志人類對材料性能的發掘達到了新的高度。1999年,納米產品的年營業額達到500億美元。

二、納米技術在防腐中的應用

納米涂料必須滿足兩個條件:一是有一相尺寸在1~100nm;二是因為納米相的存在而使涂料的性能有明顯提高或具有新功能。納米涂料性能改善主要包括:第一、施工性能的改善。利用納米粒子粒徑對流變性的影響,如納米SiO2用于建筑涂料,可防止涂料的流掛;第二、耐候性的改善。利用納米粒子對紫外線的吸收性,如利用納米TiO2、SiO2可制得耐候性建筑外墻涂料、汽車面漆等;第三、力學性能的改善。利用納米粒子與樹脂之間強大的界面結合力,可提高涂層的強度、硬度、耐磨性、耐刮傷性等。納米功能性涂料主要有抗菌涂料、界面涂料、隱身涂料、靜電屏蔽涂料、隔熱涂料、大氣凈化涂料、電絕緣涂料、磁性涂料等。

納米技術的應用為涂料工業的發展開辟了一條新途徑,目前用于涂料的納米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于納米粒子的比表面大、表面自由能高,粒子之間極易團聚,納米粒子的這種特性決定了納米涂料不可能象顏料、添料與基料通過簡單的混配得到。同時納米粒子種類很多,性能各異,不是每一種納米粒子和每一粒徑范圍的納米粒子制得的涂料都能達到所期望的性能和功能,需要經過大量的實驗研究工作,才有可能得到真正的納米涂料。

查看全文

納米涂料發展與應用分析論文

[論文關鍵詞]納米材料應用

[論文摘要]科技的發展,使我們對物質的結構研究的越來越透徹。納米技術便由此產生了,主要對納米材料和納米涂料的應用加以闡述。

一、納米的發展歷史

納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質來說,納米是一個很小的單位,不如,人的頭發絲的直徑一般為7000-8000nm,人體紅細胞的直徑一般為3000-5000nm,一般病毒的直徑也在幾十至幾百納米大小,金屬的晶粒尺寸一般在微米量級;對于微觀物質如原子、分子等以前用埃來表示,1埃相當于1個氫原子的直徑,1納米是10埃。一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區別常規尺寸材料的一些特殊物理化學特性。

1959年,著名物理學家、諾貝爾獎獲得者理查德。費曼預言,人類可以用小的機器制作更小的機器,最后實現根據人類意愿逐個排列原子、制造產品,這是關于納米科技最早的夢想。1991年,美國科學家成功地合成了碳納米管,并發現其質量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發現標志人類對材料性能的發掘達到了新的高度。1999年,納米產品的年營業額達到500億美元。

二、納米技術在防腐中的應用

查看全文

數學納米涂料發展應用論文

[論文關鍵詞]納米材料應用

[論文摘要]科技的發展,使我們對物質的結構研究的越來越透徹。納米技術便由此產生了,主要對納米材料和納米涂料的應用加以闡述。

一、納米的發展歷史

納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質來說,納米是一個很小的單位,不如,人的頭發絲的直徑一般為7000-8000nm,人體紅細胞的直徑一般為3000-5000nm,一般病毒的直徑也在幾十至幾百納米大小,金屬的晶粒尺寸一般在微米量級;對于微觀物質如原子、分子等以前用埃來表示,1埃相當于1個氫原子的直徑,1納米是10埃。一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區別常規尺寸材料的一些特殊物理化學特性。

1959年,著名物理學家、諾貝爾獎獲得者理查德。費曼預言,人類可以用小的機器制作更小的機器,最后實現根據人類意愿逐個排列原子、制造產品,這是關于納米科技最早的夢想。1991年,美國科學家成功地合成了碳納米管,并發現其質量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發現標志人類對材料性能的發掘達到了新的高度。1999年,納米產品的年營業額達到500億美元。

二、納米技術在防腐中的應用

查看全文

探析納米涂料的發展應用論文

[論文關鍵詞]納米材料應用

[論文摘要]科技的發展,使我們對物質的結構研究的越來越透徹。納米技術便由此產生了,主要對納米材料和納米涂料的應用加以闡述。

一、納米的發展歷史

納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質來說,納米是一個很小的單位,不如,人的頭發絲的直徑一般為7000-8000nm,人體紅細胞的直徑一般為3000-5000nm,一般病毒的直徑也在幾十至幾百納米大小,金屬的晶粒尺寸一般在微米量級;對于微觀物質如原子、分子等以前用埃來表示,1埃相當于1個氫原子的直徑,1納米是10埃。一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區別常規尺寸材料的一些特殊物理化學特性。

1959年,著名物理學家、諾貝爾獎獲得者理查德。費曼預言,人類可以用小的機器制作更小的機器,最后實現根據人類意愿逐個排列原子、制造產品,這是關于納米科技最早的夢想。1991年,美國科學家成功地合成了碳納米管,并發現其質量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發現標志人類對材料性能的發掘達到了新的高度。1999年,納米產品的年營業額達到500億美元。

二、納米技術在防腐中的應用

查看全文

納米材料發展與應用論文

摘要:納米涂料對甲醛、氨氣等有害氣體有吸收和消除的功能,使室內空氣更加清新。對各種霉菌的殺抑率達99%以上,有長期的防霉防藻效果。納米改性內墻涂料,實際上是高級的衛生型涂料,適合于家庭、醫院、賓館和學校的涂裝。納米改性外墻涂料,利用納米材料二元協同的荷葉雙疏機理,較低的表面張力,具有高強的附著力,由于目前應用納米材料對涂料進行改性尚處在初級階段,技術、工藝還不太成熟,需要探索和改進。但涂料的各種性能得到某些改進的試驗結果足以證明,納米改性涂料的市場前景是非常好的。

關鍵詞:納米材料應用

納米發展小史

1959年,著名物理學家、諾貝爾獎獲得者理查德。費曼預言,人類可以用小的機器制作更小的機器,最后實現根據人類意愿逐個排列原子、制造產品,這是關于納米科技最早的夢想。

1991年,美國科學家成功地合成了碳納米管,并發現其質量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發現標志人類對材料性能的發掘達到了新的高度。1999年,納米產品的年營業額達到500億美元。

什么是納米材料

查看全文

納米材料畢業論文

摘要:納米涂料對甲醛、氨氣等有害氣體有吸收和消除的功能,使室內空氣更加清新。對各種霉菌的殺抑率達99%以上,有長期的防霉防藻效果。納米改性內墻涂料,實際上是高級的衛生型涂料,適合于家庭、醫院、賓館和學校的涂裝。納米改性外墻涂料,利用納米材料二元協同的荷葉雙疏機理,較低的表面張力,具有高強的附著力,由于目前應用納米材料對涂料進行改性尚處在初級階段,技術、工藝還不太成熟,需要探索和改進。但涂料的各種性能得到某些改進的試驗結果足以證明,納米改性涂料的市場前景是非常好的。

關鍵詞:納米材料應用

納米發展小史

1959年,著名物理學家、諾貝爾獎獲得者理查德。費曼預言,人類可以用小的機器制作更小的機器,最后實現根據人類意愿逐個排列原子、制造產品,這是關于納米科技最早的夢想。

1991年,美國科學家成功地合成了碳納米管,并發現其質量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發現標志人類對材料性能的發掘達到了新的高度。1999年,納米產品的年營業額達到500億美元。

什么是納米材料

查看全文

納米氧化鋅制備研究論文

納米氧化鋅是一種面向21世紀的新型高功能精細無機產品,其粒徑介于1~100納米,又稱為超微細氧化鋅。由于顆粒尺寸的細微化,比表面積急劇增加,使得納米氧化鋅產生了其本體塊狀材料所不具備的表面效應、小尺寸效應和宏觀量子隧道效應等。因而,納米氧化鋅在磁、光、電、化學、物理學、敏感性等方面具有一般氧化鋅產品無法比擬的特殊性能和新用途,在橡膠、涂料、油墨、顏填料、催化劑、高檔化妝品以及醫藥等領域展示出廣闊的應用前景。本文將對本公司生產的納米氧化鋅從制備方法、性能表征、表面改性以及目前所開發的應用領域方面進行較為詳細的介紹。

一、納米氧化鋅的制備

氧化鋅的制備方法分為三類:即直接法(亦稱美國法)、間接法(亦稱法國法)和濕化學法。目前許多市售氧化鋅多為直接法或間接法產品,粒度為微米級,比表面積較小,這些性質大大制約了它們的應用領域及其在制品中的性能。我公司采用濕化學法(NPP-法)制備納米級超細活性氧化鋅,可用各種含鋅物料為原料,采用酸浸浸出鋅,經過多次凈化除去原料中的雜質,然后沉淀獲得堿式碳酸鋅,最后焙解獲得納米氧化鋅。與以往的制備納米級超細氧化鋅工藝技術相比,該新工藝具有以下技術方面的創新之處:

1.平衡條件下反應動力學原理與強化的傳熱技術結合,迅速完成堿式碳酸鋅的焙解。

2.通過工藝參數的調整,可以制備不同純度、粒度及顏色的各種型號的納米氧化鋅產品。

3.本工藝可以利用多種含鋅物料為原料,將其轉化為高附加值產品。

查看全文

納米氧化鋅應用分析論文

納米氧化鋅是一種面向21世紀的新型高功能精細無機產品,其粒徑介于1~100納米,又稱為超微細氧化鋅。由于顆粒尺寸的細微化,比表面積急劇增加,使得納米氧化鋅產生了其本體塊狀材料所不具備的表面效應、小尺寸效應和宏觀量子隧道效應等。因而,納米氧化鋅在磁、光、電、化學、物、敏感性等方面具有一般氧化鋅產品無法比擬的特殊性能和新用途,在橡膠、涂料、油墨、顏填料、催化劑、高檔化妝品以及醫藥等領域展示出廣闊的前景。本文將對本公司生產的納米氧化鋅從制備、性能表征、表面改性以及所開發的應用領域方面進行較為詳細的介紹。

一、納米氧化鋅的制備

氧化鋅的制備方法分為三類:即直接法(亦稱美國法)、間接法(亦稱法國法)和濕化學法。目前許多市售氧化鋅多為直接法或間接法產品,粒度為微米級,比表面積較小,這些性質大大制約了它們的應用領域及其在制品中的性能。我公司采用濕化學法(NPP-法)制備納米級超細活性氧化鋅,可用各種含鋅物料為原料,采用酸浸浸出鋅,經過多次凈化除去原料中的雜質,然后沉淀獲得堿式碳酸鋅,最后焙解獲得納米氧化鋅。與以往的制備納米級超細氧化鋅工藝技術相比,該新工藝具有以下技術方面的創新之處:

1.平衡條件下反應動力學原理與強化的傳熱技術結合,迅速完成堿式碳酸鋅的焙解。

2.通過工藝參數的調整,可以制備不同純度、粒度及顏色的各種型號的納米氧化鋅產品。

3.本工藝可以利用多種含鋅物料為原料,將其轉化為高附加值產品。

查看全文

納米材料應用研究論文

一、納米材料的特殊性質

(一)力學性質

高韌、高硬、高強是結構材料開發應用的經典主題。具有納米結構的材料強度與粒徑成反比。納米材料的位錯密度很低,位錯滑移和增殖符合Frank-Reed模型,其臨界位錯圈的直徑比納米晶粒粒徑還要大,增殖后位錯塞積的平均間距一般比晶粒大,所以納迷材料中位錯滑移和增殖不會發生,這就是納米晶強化效應。

(二)磁學性質

當代計算機硬盤系統的磁記錄密度超過1.55Gb/cm2,在這情況下,感應法讀出磁頭和普通坡莫合金磁電阻磁頭的磁致電阻效應為3%,已不能滿足需要,而納米多層膜系統的巨磁電阻效應高達50%,可以用于信息存儲的磁電阻讀出磁頭,具有相當高的靈敏度和低噪音。

(三)電學性質

查看全文