卷積神經網絡具體步驟范文
時間:2024-04-09 17:53:00
導語:如何才能寫好一篇卷積神經網絡具體步驟,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。
篇1
【關鍵詞】:高速公路 防逃 人臉識別 高清視
中圖分類號:U412.36+6 文獻標識碼:A
人臉識別的分類與概述
人臉識別就是通過計算機提取人臉的特征,并根據這些特征進行身份驗證。人臉與人體的其他生物特征(指紋、虹膜等)一樣與生俱來,它們所具有的唯一性和不易被復制的良好特性為身份鑒別提供了必要的前提;同其他生物特征識別技術相比,人臉識別技術具有操作簡單、結果直觀、隱蔽性好的優越性。人臉識別一般包括三個步驟:人臉檢測、人臉特征提取和人臉的識別與驗證。其處理流程如圖
輸入圖像 人臉圖像人臉特征輸出結果
人臉識別的一般步驟
人臉識別方法繁多,早期研究較多的方法有基于幾何特征的人臉識別方法和基于模板匹配的人臉識別方法。目前人臉識別方法主要研究及應用的是基于統計的識別方法、基于連接機制的識別方法以及其它一些綜合方法。下面是這幾類方法的基本介紹:[2]
(1)基于幾何特征的人臉識別方法
幾何特征矢量是以人臉器官如眼睛、鼻子、嘴巴等的形狀和幾何關系為基礎的特征矢量,其分量通常包括人臉指定兩點間距離、曲率、角度等。早期的研究者Brunelli[3]等人采用改進的積分投影法提取出用歐式距離表征的35維人臉特征矢量用于人臉識別。Huang Chung Lin等人[4]采用動態模板[5,6,7]與活動輪廓模型提取出人臉器官的輪廓[8,9,10]。基于幾何特征的人臉識別方法有如下優點:符合人類識別人臉的機理,易于理解;對每幅圖像只需要存儲一個特征矢量,存儲量小;對光照變化不敏感。但這種方法同樣存在一些問題,如從圖像中提取這些特征比較困難;對強烈的表情變化和姿態變化的魯棒性差等。
(2)基于模板匹配的人臉識別方法
模板匹配大都采用歸一化相關,直接計算兩幅圖之間的匹配程度。最簡單的人臉模板就是將人臉看成一個橢圓[10,11]。另一種方法就是將人臉用一組獨立的小模板表示,如眼睛模板、嘴巴模板、鼻子模板等,采用彈性模板方法提取這些模板特征[12]。Brunelli等人專門比較了基于幾何特征的人臉識別方法和基于模板匹配的人臉識別方法,他們得出的結論是:基于幾何特征的人臉識別方法具有識別速度快和內存要求小等優點,但基于模板匹配的識別率要高于基于幾何特征的識別率。
(3)基于統計的人臉識別方法
基于統計特征的識別方法包括基于特征臉的方法和基于隱馬爾可夫模型的方法。特征臉(Eigenface)方法[13]是從主成分分析導出的一種人臉識別和描述技術。主成分分析實質上是K-L展開的網絡遞推實現,K-L變換是圖像壓縮中的一種最優正交變換,其生成矩陣一般為訓練樣本的總體散布矩陣。特征臉方法就是將包含人臉的圖像區域看作是一種隨機向量,因此可以采用K-L變換獲得其正交K-L基底。對應其中較大特征值的基底具有與人臉相似的形狀,因此又稱之為特征臉。
隱馬爾可夫模型(HMM)是用于描述信號統計特性的一組統計模型。基于人臉從上到下、從左到右的結構特征,Samaria等人[14]首先將1-D HMM和2-D Pseudo HMM用于人臉識別。Kohir等[15]采用1-D HMM將低頻DCT系數作為觀察矢量獲得了好的識別效果。Eickeler等[16]采用2-DPseudo HMM識別DCT壓縮的JPEG圖像中的人臉圖像。Nefian等[17]采用嵌入式HMM識別人臉。
(4)基于連接機制的人臉識別方法(神經網絡彈性圖匹配)
基于連接機制的識別方法,包括一般的神經網絡方法和彈性圖匹配(Elastic Graph Matching)方法。神經網絡在人臉識別應用中有很長的歷史[18]。Demers 等[19]提出采用PCA方法提取人臉圖像特征,用自相關神經網絡進一步壓縮特征,最后采用一個多層處理器來實現人臉識別。Laurence等[20]通過一個多級的SOM實現樣本的聚類,將卷積神經網絡(CNN)用于人臉識別。Lin等[21]采用基于概率決策的神經網絡(PDBNN)方法。最近,徑向基函數RBF神經網絡因具有逼近性好、空間描述緊湊和訓練速度快等特點而被用于人臉識別。Gutta等[22]提出了將RBF與樹分類器結合起來進行人臉識別的混合分類器結構,后來他們用RBF神經網絡進行了針對部分人臉的識別研究[23],他們的研究表明利用部分人臉也可以有效地識別人臉。Er等[24]采用PCA進行維數壓縮,再用LDA抽取特征,然后基于RBF進行人臉識別。Haddadnia 等[25]基于PZMI(Pseudo Zernike Moment Invariant)特征,并采用混合學習算法的RBF神經網絡進行人臉識別。此外,Lucas 等采用連續的n-tuple網絡識別人臉。
彈性圖匹配方法是一種基于動態鏈接結構的方法[26]。在人臉圖像上放置一組矩形網格節點,每個節點的特征用該節點處的多尺度Gabor幅度特征描述,各節點之間的連接關系用幾何距離表示,從而構成基于二維拓撲圖的人臉描述。根據兩個圖像中各節點和連接之間的相似性可以進行人臉識別。Wiskott等[27]將人臉特征上的一些點作為基準點,強調了人臉特征的重要性。他們采用每個基準點存儲一串具有代表性的特征矢量,大大減少了系統的存儲量。Würtz 等[28]只使用人臉面部的特征,進一步消除了結構中的冗余信息和背景信息,并使用一個多層的分級結構。Grudin等[29]也采用分級結構的彈性圖,通過去除了一些冗余節點,形成稀疏的人臉描述結構。Nastar等[30]提出將人臉圖像I(x,y)表示為可變形的3D網格表面(x, y, I(x,y)),將人臉匹配問題轉換為曲面匹配問題,利用有限元分析的方法進行曲面變形,根據兩幅圖像之間變形匹配的程度識別人臉。
(5)基于形變模型的方法
基于形變模型的方法是一個受到重視的方法。通過合成新的視覺圖像,可以處理姿態變化的問題。Lanitis等[31]通過在人臉特征邊沿選擇一些稀疏的基準點描述人臉的形狀特征,然后將形狀變形到所有人臉圖像的平均形狀,再根據變形后的形狀進行紋理(灰度)變形,形成與形狀無關的人臉圖像。然后分別對形狀和灰度進行PCA變換,根據形狀和紋理的相關性,用PCA對各自的結果進一步分析,最終得到描述人臉的AAM(Active Appearance Model)模型。通過改變這些參數可得到不同變化的人臉圖像,模型參數能夠用于人臉識別。Romdhani 等[32]采用激光掃描儀獲得人臉的3D數據,分別對一些基準點構成的形狀和基準點的灰度(或彩色)完成PCA,得到3D人臉形狀和灰度(彩色)基圖像,通過變化參數就可獲得不同的3D人臉模型。通過施加一些先驗約束可以避免合成不真實的人臉圖像。利用線性形狀和紋理誤差,通過3D模型向2D輸入圖像的自動匹配實現人臉識別。
項目采用的識別算法
人臉自動識別技術經過多年來的研究已經積累了大量研究成果。但是仍然面臨很多問題,尤其是在非約束環境下的人臉識別。結合本研究項目及應用環境綜合考慮,采用特征臉方法對視屏資料中的司機臉部進行提取識別。
特征臉方法是90年代初期由Turk和Pentland提出算法,具有簡單有效的特點, 也稱為基于主成分分析(principal component analysis,簡稱PCA)的人臉識別方法。把人臉圖像空間線性投影到一個低維的特征空間。PCA實質上是K-L展開的網絡遞推實現。K-L變換是圖像壓縮技術中的一種最優正交變換。人們將它用于統計特征提取。從而形成子空間法模式識別的基礎。若將K-L變換用于人臉識別,則需假設人臉處于低維線性空間。由高維圖像空間K-L變換后,可得到一組新的正交基,由此可以通過保留部分正交基獲得正交K-L基底。如將子空間對應特征值較大的基底按照圖像陣列排列,則可以看出這些正交基呈現出人臉的形狀。因此這些正交基也稱為特征臉,這種人臉的識別方法也叫特征臉法。
特征子臉技術的基本思想是:從統計的觀點,尋找人臉圖像分布的基本元素,即人臉圖像樣本集協方差矩陣的特征向量,以此近似地表征人臉圖像。這些特征向量稱為特征臉(Eigenface)。
利用這些基底的線性組合可以描述、表達和逼近人臉圖像,因此可以進行人臉識別與合成。識別過程就是將人臉圖像映射到由特征臉張成的子空間上,比較其與已知人臉在特征臉空間中的位置,具體步驟如下:[33]
(1)初始化,獲得人臉圖像的訓練集并計算特征臉,定義為人臉空間;
(2)輸入待識別人臉圖像,將其映射到特征臉空間,得到一組權值;
(3)通過檢查圖像與人臉空間的距離判斷它是否為人臉;
(4)若為人臉,根據權值模式判斷它是否為數據庫中的某個人。
1. 計算特征臉
假設人臉圖像包含個像素,因此可以用維向量Γ表示。如人臉訓練集由幅人臉圖像構成,則可以用表示人臉訓練集。
其均值為:
(2-1)
每幅圖像與均值的差為:
(2-2)
構造人臉訓練集的協方差矩陣:
(2-3)
其中 。
協方差矩陣的正交分解向量即為人臉空間的基向量,也即特征臉。
一般比較大(通常大于1000),所以對矩陣直接求解特征向量是不可能的,為此引出下列定理:
SVD定理:設是一秩為的維矩陣,則存在兩個正交矩陣:
(2-4)
(2-5)
以及對角陣:
(2-6)
滿足
其中:為矩陣和的非零特征值,和分別為和對應于的特征矢量。上述分解成為矩陣的奇異值分解(SVD),為的奇異值。
推論:
(2-7)
由上述定理可知:
人臉訓練集所包含的圖像一般要比圖像的像素數小的多,因此可以轉求矩陣
(2-8)
的特征向量,M為人臉訓練集圖像總數。
矩陣的特征向量由差值圖像與線性組合得到:
=(2-9)
實際上,m(m
(2-10)
識別
基于特征臉的人臉識別過程由訓練階段和識別階段兩個階段組成。在訓練階段,每個己知人臉映射由特征臉張成的子空間上,得到m維向量:
(2-11)
距離閾值定義如下:
(2-12)
在識別階段,首先把待識別的圖像映射到特征臉空間,得到向量
(2-13)
與每個人臉集的距離定義為
(2-14)
為了區分人臉和非人臉,還需計算原始圖像與其由特征臉空間重建的圖像之間的距離:
(2-15)
其中:
(2-16)
采用最小距離法對人臉進行分類,分類規則如下:
(1)若,則輸入圖像不是人臉圖像;
(2)若,則輸入圖像包含未知人臉;
(3)若,則輸入圖像為庫中的某個人臉。
實際上,特征臉反映了隱含在人臉樣本集合內部的信息和人臉的結構關系。將眼睛、面頰、下頜的樣本集協方差矩陣的特征向量稱為特征眼、特征頜和特征唇,統稱特征子臉。特征子臉在相應的圖像空間中生成子空間,稱為子臉空間。計算出測試圖像窗口在子臉空間的投影距離,若窗口圖像滿足閾值比較條件,則判斷其為人臉。
基于特征分析的方法,也就是將人臉基準點的相對比率和其它描述人臉臉部特征的形狀參數或類別參數等一起構成識別特征向量,這種基于整體臉的識別不僅保留了人臉部件之間的拓撲關系,而且也保留了各部件本身的信息,而基于部件的識別則是通過提取出局部輪廓信息及灰度信息來設計具體識別算法。現在Eigenface(PCA)算法已經與經典的模板匹配算法一起成為測試人臉識別系統性能的基準算法;而自1991年特征臉技術誕生以來,研究者對其進行了各種各樣的實驗和理論分析,FERET測試結果也表明,改進的特征臉算法是主流的人臉識別技術,也是具有最好性能的識別方法之一。
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然后再計算出它們的幾何特征量,而這些特征量形成一描述該面像的特征向量。其技術的核心實際為"局部人體特征分析"和"圖形/神經識別算法。"這種算法是利用人體面部各器官及特征部位的方法。如對應幾何關系多數據形成識別參數與數據庫中所有的原始參數進行比較、判斷與確認。Turk和Pentland提出特征臉的方法,它根據一組人臉訓練圖像構造主元子空間,由于主元具有臉的形狀,也稱為特征臉,識別時將測試圖像投影到主元子空間上,得到一組投影系數,和各個已知人的人臉圖像比較進行識別。
結束語
從目前國情來講,在一段時間內高速公路收費還會繼續存在,某些司機逃費的僥幸心也同樣會有。通過帶路徑識別功能的 RFID 復合卡作為通行卡,利用 RFID 卡的信息對車輛進行跟蹤,在不增加硬件投入的情況下,直接可以給車道收費系統提供抓拍高清圖像,以及其它報警聯動系統提供圖像等,可有效解決高速公路沖卡逃費問題,可廣泛應用于封閉式管理的公路收費系統。
參考文獻:
[1]江艷霞. 視頻人臉跟蹤識別算法研究. 上海交通大學博士學位論文,2007.
[2]Brunelli R and Poggio T., Feature Recognition: Features Versus Templates. IEEE Transactions on
PAMI, 1993, 15(10):1042 -1052.
[3]李剛. 基于特征臉法的正面人臉識別研究. 國防科學技術大學碩士學位論文,2002.11
[4]JOHN CANNY. A Computational Approach to Edge Detection. IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, VOL.PAMI-8, NO.6, NOVEMBER 1986.
[5]張建飛、陳樹越等. 基于支持向量基的交通視頻人車識別研究[J]. 電視技術,2011
[6]肖波、樊友平等. 復雜背景下基于運動特征的人面定位[J]. 重慶大學學報,2002
[7] 《中華人民共和國交通部公路聯網收費技術要求》,交通部
[8] 《廣東省高速公路聯網收費系統》,DB44 127-2003,廣東省質量技術監督局
[9] 《視頻安防監控數字錄像設備》,GB 20815-2006
[10]《安全防范工程技術規范》,GB 50348-2004
- 上一篇:防災減災應急預案方案
- 下一篇:固定資產報廢審計報告